\(\int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx\) [601]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 509 \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\frac {(a-b) \sqrt {a+b} (2 a A-b B) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (2 a (A-B)-b (4 A+B)) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (2 A b+3 a B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}+\frac {2 a A \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d}-\frac {(2 a A-b B) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \] Output:

(a-b)*(a+b)^(1/2)*(2*A*a-B*b)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*c 
os(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1- 
sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/ 
2)-(a+b)^(1/2)*(2*a*(A-B)-b*(4*A+B))*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF 
((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2)) 
*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d/sec(d*x+c 
)^(1/2)-(a+b)^(1/2)*(2*A*b+3*B*a)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticPi(( 
a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^ 
(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d/sec 
(d*x+c)^(1/2)+2*a*A*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)/d-( 
2*A*a-B*b)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (warning: unable to verify)

Time = 17.65 (sec) , antiderivative size = 927, normalized size of antiderivative = 1.82 \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx =\text {Too large to display} \] Input:

Integrate[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(3/ 
2),x]
 

Output:

(2*a*A*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (Sqrt 
[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-2*a^2*A*Tan[(c + d*x)/2] - 2*a*A*b*Tan[( 
c + d*x)/2] + a*b*B*Tan[(c + d*x)/2] + b^2*B*Tan[(c + d*x)/2] + 4*a*A*b*Ta 
n[(c + d*x)/2]^3 - 2*b^2*B*Tan[(c + d*x)/2]^3 + 2*a^2*A*Tan[(c + d*x)/2]^5 
 - 2*a*A*b*Tan[(c + d*x)/2]^5 - a*b*B*Tan[(c + d*x)/2]^5 + b^2*B*Tan[(c + 
d*x)/2]^5 + 4*A*b^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + 
 b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*T 
an[(c + d*x)/2]^2)/(a + b)] + 6*a*b*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/ 
2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c 
 + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 4*A*b^2*EllipticPi[-1, Arc 
Sin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[( 
c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/ 
(a + b)] + 6*a*b*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + 
b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c 
 + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - (a + b)*(2*a*A - b*B)*Elli 
pticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2 
]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[( 
c + d*x)/2]^2)/(a + b)] + 2*(-(A*b^2) + 2*a*b*(A - B) + a^2*(A + B))*Ellip 
ticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2] 
^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan...
 

Rubi [A] (verified)

Time = 2.39 (sec) , antiderivative size = 482, normalized size of antiderivative = 0.95, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3440, 3042, 3468, 27, 3042, 3540, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3468

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 \int \frac {-b (2 a A-b B) \cos ^2(c+d x)-\left (A a^2-2 b B a-A b^2\right ) \cos (c+d x)+a (2 A b+a B)}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {-b (2 a A-b B) \cos ^2(c+d x)-\left (A a^2-2 b B a-A b^2\right ) \cos (c+d x)+a (2 A b+a B)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {-b (2 a A-b B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+\left (-A a^2+2 b B a+A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+a (2 A b+a B)}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3540

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {b^2 (2 A b+3 a B) \cos ^2(c+d x)+2 a b (2 A b+a B) \cos (c+d x)+a b (2 a A-b B)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {b^2 (2 A b+3 a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 a b (2 A b+a B) \sin \left (c+d x+\frac {\pi }{2}\right )+a b (2 a A-b B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3532

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 (3 a B+2 A b) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx+\int \frac {a b (2 a A-b B)+2 a b (2 A b+a B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {b^2 (3 a B+2 A b) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {a b (2 a A-b B)+2 a b (2 A b+a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a b (2 a A-b B)+2 a b (2 A b+a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b \sqrt {a+b} (3 a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a b (2 a A-b B) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a b (2 a A-2 a B-4 A b-b B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-\frac {2 b \sqrt {a+b} (3 a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-a b (2 a A-2 a B-4 A b-b B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a b (2 a A-b B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b \sqrt {a+b} (3 a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a b (2 a A-b B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b \sqrt {a+b} (2 a A-2 a B-4 A b-b B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} (3 a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {2 b \sqrt {a+b} (2 a A-2 a B-4 A b-b B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {2 b (a-b) \sqrt {a+b} (2 a A-b B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 b \sqrt {a+b} (3 a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}-\frac {(2 a A-b B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

Input:

Int[(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(((2*(a - b)*b*Sqrt[a + b]*(2*a*A - 
b*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*S 
qrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + 
b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - (2*b*Sqrt[a + b]*(2*a*A 
- 4*A*b - 2*a*B - b*B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d* 
x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Se 
c[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*b*Sqrt[ 
a + b]*(2*A*b + 3*a*B)*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + 
b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqr 
t[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d) 
/(2*b) + (2*a*A*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x 
]]) - ((2*a*A - b*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c 
+ d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3468
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c 
 + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 
1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n 
+ 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (A*b + a 
*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) 
 - a*(b*c - a*d)*(B*c - A*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - 
a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] 
/; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3540
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f 
*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d)   Int[(1/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 
 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + 
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1244\) vs. \(2(456)=912\).

Time = 14.68 (sec) , antiderivative size = 1245, normalized size of antiderivative = 2.45

method result size
default \(\text {Expression too large to display}\) \(1245\)
parts \(\text {Expression too large to display}\) \(1295\)

Input:

int((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/d*((-4*cos(d*x+c)^2-8*cos(d*x+c)-4)*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)* 
(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*EllipticPi(-csc(d*x+c) 
+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-6*cos(d*x+c)^2-12*cos(d*x+c)-6)*B*( 
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c))) 
^(1/2)*a*b*EllipticPi(-csc(d*x+c)+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(2*c 
os(d*x+c)^2+4*cos(d*x+c)+2)*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*( 
a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*EllipticE(-csc(d*x+c)+cot(d*x+c) 
,(-(a-b)/(a+b))^(1/2))+(2*cos(d*x+c)^2+4*cos(d*x+c)+2)*A*(cos(d*x+c)/(1+co 
s(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b*Ellip 
ticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d*x 
+c)-1)*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+co 
s(d*x+c)))^(1/2)*a*b*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2) 
)+(-cos(d*x+c)^2-2*cos(d*x+c)-1)*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a 
+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*EllipticE(-csc(d*x+c)+cot(d 
*x+c),(-(a-b)/(a+b))^(1/2))+(-2*cos(d*x+c)^2-4*cos(d*x+c)-2)*A*(cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2 
*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))+(-4*cos(d*x+c)^2-8 
*cos(d*x+c)-4)*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c 
))/(1+cos(d*x+c)))^(1/2)*a*b*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b 
))^(1/2))+(2*cos(d*x+c)^2+4*cos(d*x+c)+2)*A*(cos(d*x+c)/(1+cos(d*x+c)))...
 

Fricas [F]

\[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algo 
rithm="fricas")
 

Output:

integral((B*b*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))*sqrt(b*cos( 
d*x + c) + a)*sec(d*x + c)^(3/2), x)
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/ 
2), x)
 

Giac [F]

\[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/ 
2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(3/2) 
,x)
 

Output:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(3/2) 
, x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) a b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) b^{2}+\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )d x \right ) a^{2} \] Input:

int((a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x)
 

Output:

2*int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*cos(c + d*x)*sec(c + d*x 
),x)*a*b + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**2 
*sec(c + d*x),x)*b**2 + int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*se 
c(c + d*x),x)*a**2