\(\int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\) [618]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 487 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {(a-b) \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (2 A b-a B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sin (c+d x)}{d \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {a B \sqrt {\sec (c+d x)} \sin (c+d x)}{b d \sqrt {a+b \cos (c+d x)}} \] Output:

-(a-b)*(a+b)^(1/2)*B*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c) 
)^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c 
))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d/sec(d*x+c)^(1/2)+(a+b 
)^(1/2)*B*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+ 
b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^( 
1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)-(a+b)^(1/2)*(2*A* 
b-B*a)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b) 
^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a 
+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1/2)+B*sin(d*x 
+c)/d/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+a*B*sec(d*x+c)^(1/2)*sin(d*x 
+c)/b/d/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 20.71 (sec) , antiderivative size = 814, normalized size of antiderivative = 1.67 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x] 
]),x]
 

Output:

(Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + 
d*x)/2]^2)]*(a*B*Tan[(c + d*x)/2] + b*B*Tan[(c + d*x)/2] - 2*b*B*Tan[(c + 
d*x)/2]^3 - a*B*Tan[(c + d*x)/2]^5 + b*B*Tan[(c + d*x)/2]^5 + 4*A*b*Ellipt 
icPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x 
)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b) 
] - 2*a*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[ 
1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d* 
x)/2]^2)/(a + b)] + 4*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b 
)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a 
*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*B*EllipticPi[-1 
, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - 
Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2 
]^2)/(a + b)] + (a + b)*B*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a 
+ b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + 
a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*A*b*EllipticF[Ar 
cSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 
+ Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x) 
/2]^2)/(a + b)]))/(b*d*(-1 + Tan[(c + d*x)/2]^2)*Sqrt[(1 + Tan[(c + d*x)/2 
]^2)/(1 - Tan[(c + d*x)/2]^2)]*(b*(-1 + Tan[(c + d*x)/2]^2) - a*(1 + Tan[( 
c + d*x)/2]^2)))
 

Rubi [A] (verified)

Time = 2.04 (sec) , antiderivative size = 457, normalized size of antiderivative = 0.94, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.457, Rules used = {3042, 3440, 3042, 3482, 3042, 3530, 3042, 3288, 3472, 25, 27, 3042, 3280, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3482

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \int \frac {(2 A b-a B) \cos ^2(c+d x)+2 a A \cos (c+d x)+a B}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \int \frac {(2 A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 a A \sin \left (c+d x+\frac {\pi }{2}\right )+a B}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3530

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\int \frac {B \cos (c+d x) a^2+b B a}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{b}+\frac {(2 A b-a B) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+b B a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}+\frac {(2 A b-a B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right ) a^2+b B a}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3472

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {\int -\frac {a \left (a^2-b^2\right ) B}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}+\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {a \left (a^2-b^2\right ) B}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-a B \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-a B \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3280

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-a B \left (\int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx\right )}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-a B \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-a B \left (\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {\frac {2 a B \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-a B \left (\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )}{b}-\frac {2 \sqrt {a+b} (2 A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a+b \cos (c+d x)}}\right )\)

Input:

Int[(A + B*Cos[c + d*x])/(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((B*Sqrt[Cos[c + d*x]]*Sin[c + d*x]) 
/(d*Sqrt[a + b*Cos[c + d*x]]) + ((-2*Sqrt[a + b]*(2*A*b - a*B)*Cot[c + d*x 
]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[ 
Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]* 
Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d) + (-(a*B*((2*(a - b)*Sqrt[a 
+ b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*S 
qrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + 
b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) - (2*Sqrt[a + b]*Cot[c + 
 d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + 
d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a* 
(1 + Sec[c + d*x]))/(a - b)])/(a*d))) + (2*a*B*Sin[c + d*x])/(d*Sqrt[Cos[c 
 + d*x]]*Sqrt[a + b*Cos[c + d*x]]))/b)/2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3280
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin 
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[1/(a - b)   Int[1/(Sqrt[a + b*Sin 
[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[b/(a - b)   Int[(1 + Si 
n[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] / 
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
 NeQ[c^2 - d^2, 0]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3482
Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*((c + d*Sin[e + f*x])^n/(f*(2* 
n + 3))), x] + Simp[1/(2*n + 3)   Int[((c + d*Sin[e + f*x])^(n - 1)/Sqrt[a 
+ b*Sin[e + f*x]])*Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*n) + (B*(a*c + b*d 
)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n + 3) + B* 
(a*d + 2*b*c*n))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, 
B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Eq 
Q[n^2, 1/4]
 

rule 3530
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)])^(3/2)), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b 
*Sin[e + f*x]], x], x] + Simp[1/b   Int[(A*b + (b*B - a*C)*Sin[e + f*x])/(( 
a + b*Sin[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, d, 
e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 9.12 (sec) , antiderivative size = 507, normalized size of antiderivative = 1.04

method result size
parts \(\frac {2 A \left (\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )-2 \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}}{d \sqrt {a +b \cos \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\sec \left (d x +c \right )}}-\frac {B \sqrt {a +b \cos \left (d x +c \right )}\, \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \left (-2 \cos \left (d x +c \right )-4-2 \sec \left (d x +c \right )\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )-\cos \left (d x +c \right ) \sin \left (d x +c \right ) b -\sin \left (d x +c \right ) a \right )}{d b \left (\cos \left (d x +c \right )^{2} b +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+a \right ) \sqrt {\sec \left (d x +c \right )}}\) \(507\)
default \(-\frac {\sqrt {a +b \cos \left (d x +c \right )}\, \left (A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \left (4 \cos \left (d x +c \right )+8+4 \sec \left (d x +c \right )\right )+B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right ) \left (-2 \cos \left (d x +c \right )-4-2 \sec \left (d x +c \right )\right )+B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )+B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (\cos \left (d x +c \right )+2+\sec \left (d x +c \right )\right )+A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (-2 \cos \left (d x +c \right )-4-2 \sec \left (d x +c \right )\right )-B \cos \left (d x +c \right ) \sin \left (d x +c \right ) b -B \sin \left (d x +c \right ) a \right )}{d b \left (\cos \left (d x +c \right )^{2} b +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+a \right ) \sqrt {\sec \left (d x +c \right )}}\) \(570\)

Input:

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

2*A/d/(a+b*cos(d*x+c))^(1/2)*(EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+ 
b))^(1/2))-2*EllipticPi(-csc(d*x+c)+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))*( 
1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)/(cos(d*x+c)/(1+cos(d*x+c))) 
^(1/2)/sec(d*x+c)^(1/2)-B/d/b*(a+b*cos(d*x+c))^(1/2)/(cos(d*x+c)^2*b+a*cos 
(d*x+c)+b*cos(d*x+c)+a)/sec(d*x+c)^(1/2)*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2 
)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*EllipticPi(-csc(d*x+c) 
+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(-2*cos(d*x+c)-4-2*sec(d*x+c))+(cos(d 
*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2 
)*a*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)+2+s 
ec(d*x+c))+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+ 
cos(d*x+c)))^(1/2)*b*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2) 
)*(cos(d*x+c)+2+sec(d*x+c))-cos(d*x+c)*sin(d*x+c)*b-sin(d*x+c)*a)
 

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algo 
rithm="fricas")
 

Output:

integral((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)) 
), x)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)
                                                                                    
                                                                                    
 

Output:

Integral((A + B*cos(c + d*x))/(sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x)) 
), x)
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c) 
)), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c) 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2 
)),x)
 

Output:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2 
)), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\sec \left (d x +c \right )}d x \] Input:

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a))/sec(c + d*x),x)