\(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [629]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 602 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (4 A b^3+3 a^3 B-7 a b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) b^2 (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 \left (3 A b^3+3 a^3 B+a^2 b B-a b^2 (A+6 B)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a (a-b) b^2 (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^3 d \sqrt {\sec (c+d x)}}+\frac {2 a (A b-a B) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}-\frac {2 a \left (4 A b^3+3 a^3 B-7 a b^2 B\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}} \] Output:

2/3*(4*A*b^3+3*B*a^3-7*B*a*b^2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b 
*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*( 
1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/(a-b)/b^2/(a+b 
)^(3/2)/d/sec(d*x+c)^(1/2)-2/3*(3*A*b^3+3*B*a^3+B*a^2*b-a*b^2*(A+6*B))*cos 
(d*x+c)^(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos( 
d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+se 
c(d*x+c))/(a-b))^(1/2)/a/(a-b)/b^2/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)-2*(a+b)^ 
(1/2)*B*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b 
)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/( 
a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/sec(d*x+c)^(1/2)+2/3*a*(A 
*b-B*a)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2)-2 
/3*a*(4*A*b^3+3*B*a^3-7*B*a*b^2)*sec(d*x+c)^(1/2)*sin(d*x+c)/b^2/(a^2-b^2) 
^2/d/(a+b*cos(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1496\) vs. \(2(602)=1204\).

Time = 16.65 (sec) , antiderivative size = 1496, normalized size of antiderivative = 2.49 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(3 
/2)),x]
 

Output:

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(4*A*b^3 + 3*a^3*B - 7*a* 
b^2*B)*Sin[c + d*x])/(3*b^2*(-a^2 + b^2)^2) - (2*(-(a^2*A*b*Sin[c + d*x]) 
+ a^3*B*Sin[c + d*x]))/(3*b^2*(-a^2 + b^2)*(a + b*Cos[c + d*x])^2) - (2*(- 
(a^3*A*b*Sin[c + d*x]) + 5*a*A*b^3*Sin[c + d*x] + 4*a^4*B*Sin[c + d*x] - 8 
*a^2*b^2*B*Sin[c + d*x]))/(3*b^2*(-a^2 + b^2)^2*(a + b*Cos[c + d*x]))))/d 
+ (2*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[( 
c + d*x)/2]^2)]*(-4*a*A*b^3*Tan[(c + d*x)/2] - 4*A*b^4*Tan[(c + d*x)/2] - 
3*a^4*B*Tan[(c + d*x)/2] - 3*a^3*b*B*Tan[(c + d*x)/2] + 7*a^2*b^2*B*Tan[(c 
 + d*x)/2] + 7*a*b^3*B*Tan[(c + d*x)/2] + 8*A*b^4*Tan[(c + d*x)/2]^3 + 6*a 
^3*b*B*Tan[(c + d*x)/2]^3 - 14*a*b^3*B*Tan[(c + d*x)/2]^3 + 4*a*A*b^3*Tan[ 
(c + d*x)/2]^5 - 4*A*b^4*Tan[(c + d*x)/2]^5 + 3*a^4*B*Tan[(c + d*x)/2]^5 - 
 3*a^3*b*B*Tan[(c + d*x)/2]^5 - 7*a^2*b^2*B*Tan[(c + d*x)/2]^5 + 7*a*b^3*B 
*Tan[(c + d*x)/2]^5 + 6*a^4*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a 
 + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/ 
2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 12*a^2*b^2*B*EllipticPi[-1, ArcSin 
[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a 
 + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 6*b^4*B*Ell 
ipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + 
d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + 
 b)] + 6*a^4*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b...
 

Rubi [A] (verified)

Time = 2.72 (sec) , antiderivative size = 590, normalized size of antiderivative = 0.98, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3440, 3042, 3468, 27, 3042, 3530, 3042, 3288, 3472, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3468

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac {2 \int -\frac {3 \left (a^2-b^2\right ) B \cos ^2(c+d x)-3 b (A b-a B) \cos (c+d x)+a (A b-a B)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {3 \left (a^2-b^2\right ) B \cos ^2(c+d x)-3 b (A b-a B) \cos (c+d x)+a (A b-a B)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {3 \left (a^2-b^2\right ) B \sin \left (c+d x+\frac {\pi }{2}\right )^2-3 b (A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )+a (A b-a B)}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3530

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {a b (A b-a B)-3 \left (A b^3+a \left (a^2-2 b^2\right ) B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{b}+\frac {3 B \left (a^2-b^2\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{b}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {a b (A b-a B)-3 \left (A b^3+a \left (a^2-2 b^2\right ) B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}+\frac {3 B \left (a^2-b^2\right ) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {a b (A b-a B)-3 \left (A b^3+a \left (a^2-2 b^2\right ) B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}-\frac {6 B \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3472

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {\int \frac {a \left (3 B a^3-7 b^2 B a+4 A b^3\right )+b \left (2 B a^3+A b a^2-6 b^2 B a+3 A b^3\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {6 B \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {\int \frac {a \left (3 B a^3-7 b^2 B a+4 A b^3\right )+b \left (2 B a^3+A b a^2-6 b^2 B a+3 A b^3\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {6 B \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) \left (3 a^3 B+a^2 b B-a b^2 (A+6 B)+3 A b^3\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {6 B \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \left (3 a^3 B+a^2 b B-a b^2 (A+6 B)+3 A b^3\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {6 B \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \left (3 a^3 B+a^2 b B-a b^2 (A+6 B)+3 A b^3\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {6 B \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}}{3 b \left (a^2-b^2\right )}+\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (A b-a B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac {\frac {\frac {\frac {2 (a-b) \sqrt {a+b} \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} \left (3 a^3 B+a^2 b B-a b^2 (A+6 B)+3 A b^3\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 a \left (3 a^3 B-7 a b^2 B+4 A b^3\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {6 B \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}}{3 b \left (a^2-b^2\right )}\right )\)

Input:

Int[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^(3/2)),x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*(A*b - a*B)*Sqrt[Cos[c + d*x]] 
*Sin[c + d*x])/(3*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) + ((-6*Sqrt[ 
a + b]*(a^2 - b^2)*B*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b* 
Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[ 
(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2 
*d) + (((2*(a - b)*Sqrt[a + b]*(4*A*b^3 + 3*a^3*B - 7*a*b^2*B)*Cot[c + d*x 
]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x] 
])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + 
 Sec[c + d*x]))/(a - b)])/(a*d) - (2*(a - b)*Sqrt[a + b]*(3*A*b^3 + 3*a^3* 
B + a^2*b*B - a*b^2*(A + 6*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Co 
s[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a 
*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d)) 
/(a^2 - b^2) - (2*a*(4*A*b^3 + 3*a^3*B - 7*a*b^2*B)*Sin[c + d*x])/((a^2 - 
b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]))/b)/(3*b*(a^2 - b^2)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3468
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c 
 + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 
1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n 
+ 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (A*b + a 
*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) 
 - a*(b*c - a*d)*(B*c - A*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - 
a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] 
/; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3530
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)])^(3/2)), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b 
*Sin[e + f*x]], x], x] + Simp[1/b   Int[(A*b + (b*B - a*C)*Sin[e + f*x])/(( 
a + b*Sin[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, d, 
e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2666\) vs. \(2(541)=1082\).

Time = 11.91 (sec) , antiderivative size = 2667, normalized size of antiderivative = 4.43

method result size
default \(\text {Expression too large to display}\) \(2667\)
parts \(\text {Expression too large to display}\) \(2722\)

Input:

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/3/d/(a-b)^2/(a+b)^2/b^2*(a+b*cos(d*x+c))^(1/2)/((1+cos(d*x+c))*a^2+cos(d 
*x+c)*(2*cos(d*x+c)+2)*b*a+cos(d*x+c)^2*(1+cos(d*x+c))*b^2)/sec(d*x+c)^(3/ 
2)*(B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d 
*x+c)))^(1/2)*a^5*EllipticPi(-csc(d*x+c)+cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2 
))*(-6-12*sec(d*x+c)-6*sec(d*x+c)^2)-3*B*a^5*tan(d*x+c)-7*B*a*b^4*sin(d*x+ 
c)-4*A*a^2*b^3*tan(d*x+c)+A*a*b^4*(-5*sin(d*x+c)+3*tan(d*x+c))+B*a^4*b*(-4 
*sin(d*x+c)+2*tan(d*x+c))+B*a^3*b^2*(3*sin(d*x+c)+7*tan(d*x+c))+B*a^2*b^3* 
(8*sin(d*x+c)-6*tan(d*x+c))+A*a^3*b^2*(sin(d*x+c)+tan(d*x+c))+4*A*b^5*sin( 
d*x+c)-6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+co 
s(d*x+c)))^(1/2)*(cos(d*x+c)+2+sec(d*x+c))*B*a^4*b*EllipticPi(-csc(d*x+c)+ 
cot(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1 
/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(3+cos(d*x+c)+3*sec(d*x+c)+s 
ec(d*x+c)^2)*B*a^4*b*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2) 
)+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x 
+c)))^(1/2)*(3+cos(d*x+c)+3*sec(d*x+c)+sec(d*x+c)^2)*A*a*b^4*EllipticE(-cs 
c(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))-7*(cos(d*x+c)/(1+cos(d*x+c)))^(1 
/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(3+cos(d*x+c)+3*sec(d* 
x+c)+sec(d*x+c)^2)*B*a^2*b^3*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b 
))^(1/2))+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1 
+cos(d*x+c)))^(1/2)*(5+2*cos(d*x+c)+4*sec(d*x+c)+sec(d*x+c)^2)*B*a*b^4*...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algo 
rithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(5/2)/sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^(3 
/2)), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^(3 
/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(5/2 
)),x)
 

Output:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(3/2)*(a + b*cos(c + d*x))^(5/2 
)), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x))^{5/2} \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2} a b +\sec \left (d x +c \right )^{2} a^{2}}d x \] Input:

int((A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(5/2)/sec(d*x+c)^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a))/(cos(c + d*x)**2*sec(c + 
 d*x)**2*b**2 + 2*cos(c + d*x)*sec(c + d*x)**2*a*b + sec(c + d*x)**2*a**2) 
,x)