\(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx\) [79]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 68 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {\sqrt {a} (A+2 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {a A \tan (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \] Output:

a^(1/2)*(A+2*B)*arctanh(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d+a*A*t 
an(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.25 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (\sqrt {2} (A+2 B) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos (c+d x)+2 A \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d} \] Input:

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]
 

Output:

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]*(Sqrt[2]*(A + 2* 
B)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x] + 2*A*Sin[(c + d*x)/2])) 
/(2*d)
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3042, 3459, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {1}{2} (A+2 B) \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {a A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} (A+2 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {a A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {a (A+2 B) \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {a} (A+2 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a A \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

Input:

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]
 

Output:

(Sqrt[a]*(A + 2*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]] 
])/d + (a*A*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(566\) vs. \(2(60)=120\).

Time = 4.48 (sec) , antiderivative size = 567, normalized size of antiderivative = 8.34

method result size
parts \(\frac {A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-2 a \left (\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )+\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +2 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}\right )}{\sqrt {a}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}+\frac {B \sqrt {a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\ln \left (-\frac {2 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )+\ln \left (\frac {2 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(567\)
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-2 a \left (A \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )+A \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+2 B \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )+2 B \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+A \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +A \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +2 A \sqrt {a}\, \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+2 B \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +2 B \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a \right )}{\sqrt {a}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(650\)

Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x,method=_RETURNV 
ERBOSE)
 

Output:

A*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*a*(ln(-4/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x 
+1/2*c)^2)^(1/2)*a^(1/2)-2*a))+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1 
/2)*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a) 
))*sin(1/2*d*x+1/2*c)^2+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*co 
s(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+ln 
(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+2^(1/2)*(a 
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+2*2^(1/2)*(a*sin(1/2*d*x+1/2* 
c)^2)^(1/2)*a^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/(2*cos(1/2*d*x 
+1/2*c)+2^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+B*a^( 
1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(ln(-2/(2*cos(1/2*d 
*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*a^(1/2)-2*a))+ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2) 
*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a)))/ 
sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 153 vs. \(2 (60) = 120\).

Time = 0.10 (sec) , antiderivative size = 153, normalized size of antiderivative = 2.25 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {{\left ({\left (A + 2 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (A + 2 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} A \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="fricas")
 

Output:

1/4*(((A + 2*B)*cos(d*x + c)^2 + (A + 2*B)*cos(d*x + c))*sqrt(a)*log((a*co 
s(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(co 
s(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4 
*sqrt(a*cos(d*x + c) + a)*A*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + 
c))
 

Sympy [F]

\[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + B \cos {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \] Input:

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)**2,x)
 

Output:

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + B*cos(c + d*x))*sec(c + d*x)**2, 
x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 710 vs. \(2 (60) = 120\).

Time = 0.23 (sec) , antiderivative size = 710, normalized size of antiderivative = 10.44 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="maxima")
 

Output:

-1/4*(4*sqrt(2)*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*cos(3/2* 
d*x + 3/2*c)*sin(2*d*x + 2*c) - 4*sqrt(2)*cos(2*d*x + 2*c)*sin(3/2*d*x + 3 
/2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2( 
sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), c 
os(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2 
) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log 
(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin( 
d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d 
*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*c 
os(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x 
+ c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + 
 c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos 
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1 
/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c) 
, cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)) 
) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 4*(sqrt( 
2)*cos(2*d*x + 2*c) + sqrt(2))*sin(5/2*d*x + 5/2*c) + 4*(sqrt(2)*cos(2*d*x 
 + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + s...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 121 vs. \(2 (60) = 120\).

Time = 0.39 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.78 \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} {\left (A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 2 \, B \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1}\right )} \sqrt {a}}{4 \, d} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="giac")
 

Output:

-1/4*sqrt(2)*(sqrt(2)*(A*sgn(cos(1/2*d*x + 1/2*c)) + 2*B*sgn(cos(1/2*d*x + 
 1/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*s 
in(1/2*d*x + 1/2*c))) + 4*A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) 
/(2*sin(1/2*d*x + 1/2*c)^2 - 1))*sqrt(a)/d
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2} \,d x \] Input:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^2,x)
 

Output:

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^2, x)
 

Reduce [F]

\[ \int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x)
 

Output:

sqrt(a)*(int(sqrt(cos(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)**2,x)*b + in 
t(sqrt(cos(c + d*x) + 1)*sec(c + d*x)**2,x)*a)