\(\int \sqrt {b \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x) \, dx\) [242]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 39, antiderivative size = 112 \[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)}}+\frac {2 b (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 C \sqrt {b \cos (c+d x)} \sin (c+d x)}{3 d} \] Output:

2*B*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c 
)^(1/2)+2/3*b*(3*A+C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/ 
2))/d/(b*cos(d*x+c))^(1/2)+2/3*C*(b*cos(d*x+c))^(1/2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.15 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.74 \[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\frac {b \left (6 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+C \sin (2 (c+d x))\right )}{3 d \sqrt {b \cos (c+d x)}} \] Input:

Integrate[Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec 
[c + d*x],x]
 

Output:

(b*(6*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 2*(3*A + C)*Sqrt[Co 
s[c + d*x]]*EllipticF[(c + d*x)/2, 2] + C*Sin[2*(c + d*x)]))/(3*d*Sqrt[b*C 
os[c + d*x]])
 

Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.10, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.282, Rules used = {3042, 2030, 3502, 27, 3042, 3227, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b \int \frac {C \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )^2+B \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+A}{\sqrt {b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )}}dx\)

\(\Big \downarrow \) 3502

\(\displaystyle b \left (\frac {2 \int \frac {b (3 A+C)+3 b B \cos (c+d x)}{2 \sqrt {b \cos (c+d x)}}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle b \left (\frac {\int \frac {b (3 A+C)+3 b B \cos (c+d x)}{\sqrt {b \cos (c+d x)}}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (\frac {\int \frac {b (3 A+C)+3 b B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle b \left (\frac {b (3 A+C) \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+3 B \int \sqrt {b \cos (c+d x)}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (\frac {b (3 A+C) \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 B \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b \left (\frac {\frac {b (3 A+C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{\sqrt {b \cos (c+d x)}}+\frac {3 B \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b \left (\frac {\frac {b (3 A+C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}+\frac {3 B \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b \left (\frac {\frac {b (3 A+C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}+\frac {6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b \left (\frac {\frac {2 b (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}}+\frac {6 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 b d}\right )\)

Input:

Int[Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d 
*x],x]
 

Output:

b*(((6*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d 
*x]]) + (2*b*(3*A + C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(d*Sq 
rt[b*Cos[c + d*x]]))/(3*b) + (2*C*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*b* 
d))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(282\) vs. \(2(101)=202\).

Time = 1.19 (sec) , antiderivative size = 283, normalized size of antiderivative = 2.53

method result size
default \(-\frac {2 \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \left (4 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(283\)
parts \(-\frac {2 A \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}+\frac {2 B \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 C \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(474\)

Input:

int((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x,meth 
od=_RETURNVERBOSE)
 

Output:

-2/3*(b*(-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*(4*C*sin 
(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*s 
in(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1 
/2*d*x+1/2*c),2^(1/2))-2*C*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+C*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2 
*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^( 
1/2)/sin(1/2*d*x+1/2*c)/(b*(-1+2*cos(1/2*d*x+1/2*c)^2))^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.33 \[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=-\frac {2 \, {\left (\sqrt {\frac {1}{2}} {\left (3 i \, A + i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {\frac {1}{2}} {\left (-3 i \, A - i \, C\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {\frac {1}{2}} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {\frac {1}{2}} B \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \sqrt {b \cos \left (d x + c\right )} C \sin \left (d x + c\right )\right )}}{3 \, d} \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c), 
x, algorithm="fricas")
 

Output:

-2/3*(sqrt(1/2)*(3*I*A + I*C)*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + 
 c) + I*sin(d*x + c)) + sqrt(1/2)*(-3*I*A - I*C)*sqrt(b)*weierstrassPInver 
se(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(1/2)*B*sqrt(b)*weierst 
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
 + 3*I*sqrt(1/2)*B*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 
0, cos(d*x + c) - I*sin(d*x + c))) - sqrt(b*cos(d*x + c))*C*sin(d*x + c))/ 
d
 

Sympy [F]

\[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int \sqrt {b \cos {\left (c + d x \right )}} \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}\, dx \] Input:

integrate((b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c 
),x)
 

Output:

Integral(sqrt(b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec 
(c + d*x), x)
 

Maxima [F]

\[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right ) \,d x } \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c), 
x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sec 
(d*x + c), x)
 

Giac [F]

\[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right ) \,d x } \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c), 
x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sec 
(d*x + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\int \frac {\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{\cos \left (c+d\,x\right )} \,d x \] Input:

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c 
 + d*x),x)
 

Output:

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c 
 + d*x), x)
 

Reduce [F]

\[ \int \sqrt {b \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x) \, dx=\sqrt {b}\, \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) a \right ) \] Input:

int((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c),x)
 

Output:

sqrt(b)*(int(sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x),x)*b + int(sqrt( 
cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x),x)*c + int(sqrt(cos(c + d*x))*s 
ec(c + d*x),x)*a)