\(\int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \, dx\) [248]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 181 \[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {6 b B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b^2 (7 A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {2 b (7 A+5 C) \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 B (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2 C (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d} \] Output:

6/5*b*B*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d 
*x+c)^(1/2)+2/21*b^2*(7*A+5*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/ 
2*c,2^(1/2))/d/(b*cos(d*x+c))^(1/2)+2/21*b*(7*A+5*C)*(b*cos(d*x+c))^(1/2)* 
sin(d*x+c)/d+2/5*B*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*C*(b*cos(d*x+c))^ 
(5/2)*sin(d*x+c)/b/d
 

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.60 \[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {(b \cos (c+d x))^{3/2} \left (126 B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\sqrt {\cos (c+d x)} (70 A+65 C+42 B \cos (c+d x)+15 C \cos (2 (c+d x))) \sin (c+d x)\right )}{105 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2),x 
]
 

Output:

((b*Cos[c + d*x])^(3/2)*(126*B*EllipticE[(c + d*x)/2, 2] + 10*(7*A + 5*C)* 
EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(70*A + 65*C + 42*B*Cos[c + 
 d*x] + 15*C*Cos[2*(c + d*x)])*Sin[c + d*x]))/(105*d*Cos[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.05, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3502, 27, 3042, 3227, 3042, 3115, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {2 \int \frac {1}{2} (b \cos (c+d x))^{3/2} (b (7 A+5 C)+7 b B \cos (c+d x))dx}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (b \cos (c+d x))^{3/2} (b (7 A+5 C)+7 b B \cos (c+d x))dx}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (b (7 A+5 C)+7 b B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {b (7 A+5 C) \int (b \cos (c+d x))^{3/2}dx+7 B \int (b \cos (c+d x))^{5/2}dx}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (7 A+5 C) \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx+7 B \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}dx}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {b (7 A+5 C) \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+7 B \left (\frac {3}{5} b^2 \int \sqrt {b \cos (c+d x)}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (7 A+5 C) \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+7 B \left (\frac {3}{5} b^2 \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {b (7 A+5 C) \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+7 B \left (\frac {3 b^2 \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (7 A+5 C) \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+7 B \left (\frac {3 b^2 \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {b (7 A+5 C) \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+7 B \left (\frac {6 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {b (7 A+5 C) \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+7 B \left (\frac {6 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )}{7 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 b d}\)

Input:

Int[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]
 

Output:

(2*C*(b*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*b*d) + (b*(7*A + 5*C)*((2*b^2 
*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) 
+ (2*b*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*d)) + 7*B*((6*b^2*Sqrt[b*Cos[ 
c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]) + (2*b*(b*Co 
s[c + d*x])^(3/2)*Sin[c + d*x])/(5*d)))/(7*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(352\) vs. \(2(160)=320\).

Time = 1.59 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.95

method result size
default \(-\frac {2 \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{2} \left (240 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-168 B -360 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (140 A +168 B +280 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-70 A -42 B -80 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+35 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(353\)
parts \(-\frac {2 A \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{2} \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 B \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{2} \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 C \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b^{2} \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(615\)

Input:

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/105*(b*(-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2*(240 
*C*sin(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-168*B-360*C)*sin(1/2*d*x+1/2* 
c)^6*cos(1/2*d*x+1/2*c)+(140*A+168*B+280*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d 
*x+1/2*c)+(-70*A-42*B-80*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+35*A*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos 
(1/2*d*x+1/2*c),2^(1/2))-63*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*C*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2 
*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin 
(1/2*d*x+1/2*c)/(b*(-1+2*cos(1/2*d*x+1/2*c)^2))^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.01 \[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {\frac {1}{2}} {\left (7 \, A + 5 \, C\right )} b^{\frac {3}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {\frac {1}{2}} {\left (7 \, A + 5 \, C\right )} b^{\frac {3}{2}} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 63 i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 63 i \, \sqrt {\frac {1}{2}} B b^{\frac {3}{2}} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (15 \, C b \cos \left (d x + c\right )^{2} + 21 \, B b \cos \left (d x + c\right ) + 5 \, {\left (7 \, A + 5 \, C\right )} b\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d} \] Input:

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorith 
m="fricas")
 

Output:

-2/105*(5*I*sqrt(1/2)*(7*A + 5*C)*b^(3/2)*weierstrassPInverse(-4, 0, cos(d 
*x + c) + I*sin(d*x + c)) - 5*I*sqrt(1/2)*(7*A + 5*C)*b^(3/2)*weierstrassP 
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 63*I*sqrt(1/2)*B*b^(3/2)*w 
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c))) + 63*I*sqrt(1/2)*B*b^(3/2)*weierstrassZeta(-4, 0, weierstrassPInver 
se(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15*C*b*cos(d*x + c)^2 + 21*B* 
b*cos(d*x + c) + 5*(7*A + 5*C)*b)*sqrt(b*cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2), 
x)
 

Giac [F]

\[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\int {\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right ) \,d x \] Input:

int((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2),x)
 

Output:

int((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2), x)
 

Reduce [F]

\[ \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\sqrt {b}\, b \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) b \right ) \] Input:

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x)
 

Output:

sqrt(b)*b*(int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a + int(sqrt(cos(c + d*x 
))*cos(c + d*x)**3,x)*c + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*b)