\(\int \frac {(A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx\) [268]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 139 \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=-\frac {2 B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d \sqrt {\cos (c+d x)}}+\frac {2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac {2 B \sin (c+d x)}{d \sqrt {b \cos (c+d x)}} \] Output:

-2*B*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/d/cos(d* 
x+c)^(1/2)+2/3*(A+3*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1 
/2))/d/(b*cos(d*x+c))^(1/2)+2/3*A*b*sin(d*x+c)/d/(b*cos(d*x+c))^(3/2)+2*B* 
sin(d*x+c)/d/(b*cos(d*x+c))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.16 (sec) , antiderivative size = 757, normalized size of antiderivative = 5.45 \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {\cos ^3(c+d x) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \left (\frac {4 B \csc (c) \sec (c)}{d}+\frac {4 A \sec (c) \sec ^2(c+d x) \sin (d x)}{3 d}+\frac {4 \sec (c) \sec (c+d x) (A \sin (c)+3 B \sin (d x))}{3 d}\right )}{\sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x))}-\frac {4 A \cos ^{\frac {5}{2}}(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}-\frac {4 C \cos ^{\frac {5}{2}}(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x)) \sqrt {1+\cot ^2(c)}}+\frac {2 B \cos ^{\frac {5}{2}}(c+d x) \csc (c) \left (C+B \sec (c+d x)+A \sec ^2(c+d x)\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{d \sqrt {b \cos (c+d x)} (2 A+C+2 B \cos (c+d x)+C \cos (2 c+2 d x))} \] Input:

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b* 
Cos[c + d*x]],x]
 

Output:

(Cos[c + d*x]^3*(C + B*Sec[c + d*x] + A*Sec[c + d*x]^2)*((4*B*Csc[c]*Sec[c 
])/d + (4*A*Sec[c]*Sec[c + d*x]^2*Sin[d*x])/(3*d) + (4*Sec[c]*Sec[c + d*x] 
*(A*Sin[c] + 3*B*Sin[d*x]))/(3*d)))/(Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B*C 
os[c + d*x] + C*Cos[2*c + 2*d*x])) - (4*A*Cos[c + d*x]^(5/2)*Csc[c]*Hyperg 
eometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(C + B*Sec[c + 
 d*x] + A*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - Arc 
Tan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])] 
*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[b*Cos[c + d*x]]*(2*A + C + 
 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*C*Cos[c + 
 d*x]^(5/2)*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[C 
ot[c]]]^2]*(C + B*Sec[c + d*x] + A*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c] 
]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Si 
n[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[b*C 
os[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])*Sqrt[1 + Co 
t[c]^2]) + (2*B*Cos[c + d*x]^(5/2)*Csc[c]*(C + B*Sec[c + d*x] + A*Sec[c + 
d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]] 
^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]] 
*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]] 
*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan 
[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 ...
 

Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.15, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.317, Rules used = {3042, 2030, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^2 \int \frac {C \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )^2+B \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+A}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle b^2 \left (\frac {2 \int \frac {3 B b^2+(A+3 C) \cos (c+d x) b^2}{2 (b \cos (c+d x))^{3/2}}dx}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle b^2 \left (\frac {\int \frac {3 B b^2+(A+3 C) \cos (c+d x) b^2}{(b \cos (c+d x))^{3/2}}dx}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {\int \frac {3 B b^2+(A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right ) b^2}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle b^2 \left (\frac {b (A+3 C) \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+3 b^2 B \int \frac {1}{(b \cos (c+d x))^{3/2}}dx}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {b (A+3 C) \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 b^2 B \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle b^2 \left (\frac {b (A+3 C) \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 b^2 B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \cos (c+d x)}dx}{b^2}\right )}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {b (A+3 C) \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 b^2 B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\right )}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^2 \left (\frac {\frac {b (A+3 C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{\sqrt {b \cos (c+d x)}}+3 b^2 B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {\frac {b (A+3 C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}+3 b^2 B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^2 \left (\frac {\frac {b (A+3 C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}+3 b^2 B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b^2 \left (\frac {\frac {2 b (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}}+3 b^2 B \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{3 b^3}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

Input:

Int[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b*Cos[c 
+ d*x]],x]
 

Output:

b^2*((2*A*Sin[c + d*x])/(3*b*d*(b*Cos[c + d*x])^(3/2)) + ((2*b*(A + 3*C)*S 
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(d*Sqrt[b*Cos[c + d*x]]) + 3* 
b^2*B*((-2*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos 
[c + d*x]]) + (2*Sin[c + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])))/(3*b^3))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(507\) vs. \(2(126)=252\).

Time = 0.92 (sec) , antiderivative size = 508, normalized size of antiderivative = 3.65

method result size
default \(\frac {2 \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+6 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b}}{3 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(508\)
parts \(-\frac {2 A \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 B \left (-2 \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 C \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(576\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x,me 
thod=_RETURNVERBOSE)
 

Output:

2/3*(b*(-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b/sin(1/2*d 
*x+1/2*c)^3/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)*(2*A*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-12*B*cos(1/2*d*x+1/2*c)*sin(1/2*d* 
x+1/2*c)^4+6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/ 
2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+6*C*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+ 
1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*E 
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/ 
2*c)^2-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*E 
llipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*s 
in(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*b* 
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2*b)^(1/2)/(b*(-1+2*cos(1/2*d*x+1/ 
2*c)^2))^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.45 \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=-\frac {2 \, {\left (\sqrt {\frac {1}{2}} {\left (i \, A + 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {\frac {1}{2}} {\left (-i \, A - 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {\frac {1}{2}} B \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {\frac {1}{2}} B \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, b d \cos \left (d x + c\right )^{2}} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2 
),x, algorithm="fricas")
 

Output:

-2/3*(sqrt(1/2)*(I*A + 3*I*C)*sqrt(b)*cos(d*x + c)^2*weierstrassPInverse(- 
4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(1/2)*(-I*A - 3*I*C)*sqrt(b)*co 
s(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3 
*I*sqrt(1/2)*B*sqrt(b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPI 
nverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*I*sqrt(1/2)*B*sqrt(b)*co 
s(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c 
) - I*sin(d*x + c))) - (3*B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))*sin(d*x 
 + c))/(b*d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**2/(b*cos(d*x+c))**( 
1/2),x)
 

Output:

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)**2/sqrt(b*c 
os(c + d*x)), x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2 
),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)^2/sqrt(b*co 
s(d*x + c)), x)
 

Giac [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)^2/sqrt(b*co 
s(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^2\,\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x 
))^(1/2)),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x 
))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {\sqrt {b}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) b \right )}{b} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x)
 

Output:

(sqrt(b)*(int((sqrt(cos(c + d*x))*sec(c + d*x)**2)/cos(c + d*x),x)*a + int 
(sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x)**2,x)*c + int(sqrt(cos(c + d 
*x))*sec(c + d*x)**2,x)*b))/b