\(\int \frac {\cos ^4(c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(b \cos (c+d x))^{3/2}} \, dx\) [271]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 217 \[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=\frac {2 (9 A+7 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 b^2 d \sqrt {\cos (c+d x)}}+\frac {10 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 b d \sqrt {b \cos (c+d x)}}+\frac {10 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{21 b^2 d}+\frac {2 (9 A+7 C) (b \cos (c+d x))^{3/2} \sin (c+d x)}{45 b^3 d}+\frac {2 B (b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b^4 d}+\frac {2 C (b \cos (c+d x))^{7/2} \sin (c+d x)}{9 b^5 d} \] Output:

2/15*(9*A+7*C)*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/ 
b^2/d/cos(d*x+c)^(1/2)+10/21*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/ 
2*c,2^(1/2))/b/d/(b*cos(d*x+c))^(1/2)+10/21*B*(b*cos(d*x+c))^(1/2)*sin(d*x 
+c)/b^2/d+2/45*(9*A+7*C)*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/b^3/d+2/7*B*(b*co 
s(d*x+c))^(5/2)*sin(d*x+c)/b^4/d+2/9*C*(b*cos(d*x+c))^(7/2)*sin(d*x+c)/b^5 
/d
 

Mathematica [A] (verified)

Time = 2.16 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.60 \[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=\frac {168 (9 A+7 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+600 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(7 (36 A+43 C) \cos (c+d x)+5 (78 B+18 B \cos (2 (c+d x))+7 C \cos (3 (c+d x)))) \sin (2 (c+d x))}{1260 b d \sqrt {b \cos (c+d x)}} \] Input:

Integrate[(Cos[c + d*x]^4*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[ 
c + d*x])^(3/2),x]
 

Output:

(168*(9*A + 7*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 600*B*Sqrt 
[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (7*(36*A + 43*C)*Cos[c + d*x] + 
 5*(78*B + 18*B*Cos[2*(c + d*x)] + 7*C*Cos[3*(c + d*x)]))*Sin[2*(c + d*x)] 
)/(1260*b*d*Sqrt[b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.05, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.366, Rules used = {2030, 3042, 3502, 27, 3042, 3227, 3042, 3115, 3042, 3115, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\int (b \cos (c+d x))^{5/2} \left (C \cos ^2(c+d x)+B \cos (c+d x)+A\right )dx}{b^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (C \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+A\right )dx}{b^4}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {2 \int \frac {1}{2} (b \cos (c+d x))^{5/2} (b (9 A+7 C)+9 b B \cos (c+d x))dx}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int (b \cos (c+d x))^{5/2} (b (9 A+7 C)+9 b B \cos (c+d x))dx}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2} \left (b (9 A+7 C)+9 b B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {b (9 A+7 C) \int (b \cos (c+d x))^{5/2}dx+9 B \int (b \cos (c+d x))^{7/2}dx}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b (9 A+7 C) \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}dx+9 B \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}dx}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {\frac {b (9 A+7 C) \left (\frac {3}{5} b^2 \int \sqrt {b \cos (c+d x)}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+9 B \left (\frac {5}{7} b^2 \int (b \cos (c+d x))^{3/2}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b (9 A+7 C) \left (\frac {3}{5} b^2 \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+9 B \left (\frac {5}{7} b^2 \int \left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {\frac {b (9 A+7 C) \left (\frac {3}{5} b^2 \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+9 B \left (\frac {5}{7} b^2 \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \cos (c+d x)}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b (9 A+7 C) \left (\frac {3}{5} b^2 \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+9 B \left (\frac {5}{7} b^2 \left (\frac {1}{3} b^2 \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {\frac {b (9 A+7 C) \left (\frac {3 b^2 \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+9 B \left (\frac {5}{7} b^2 \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b (9 A+7 C) \left (\frac {3 b^2 \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+9 B \left (\frac {5}{7} b^2 \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {9 B \left (\frac {5}{7} b^2 \left (\frac {b^2 \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )+b (9 A+7 C) \left (\frac {6 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {b (9 A+7 C) \left (\frac {6 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 d}\right )+9 B \left (\frac {5}{7} b^2 \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 b \sin (c+d x) \sqrt {b \cos (c+d x)}}{3 d}\right )+\frac {2 b \sin (c+d x) (b \cos (c+d x))^{5/2}}{7 d}\right )}{9 b}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{7/2}}{9 b d}}{b^4}\)

Input:

Int[(Cos[c + d*x]^4*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[c + d* 
x])^(3/2),x]
 

Output:

((2*C*(b*Cos[c + d*x])^(7/2)*Sin[c + d*x])/(9*b*d) + (b*(9*A + 7*C)*((6*b^ 
2*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]) 
 + (2*b*(b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*d)) + 9*B*((2*b*(b*Cos[c + 
 d*x])^(5/2)*Sin[c + d*x])/(7*d) + (5*b^2*((2*b^2*Sqrt[Cos[c + d*x]]*Ellip 
ticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*b*Sqrt[b*Cos[c + d*x 
]]*Sin[c + d*x])/(3*d)))/7))/(9*b))/b^4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [A] (verified)

Time = 2.64 (sec) , antiderivative size = 384, normalized size of antiderivative = 1.77

method result size
default \(-\frac {2 \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-1120 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (720 B +2240 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-504 A -1080 B -2072 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (504 A +840 B +952 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-126 A -240 B -168 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-189 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+75 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{315 b \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(384\)
parts \(-\frac {2 A \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 b \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 B \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 b \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 C \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-480 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+616 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}-432 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+160 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-21 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{45 b \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(648\)

Input:

int(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2),x,me 
thod=_RETURNVERBOSE)
 

Output:

-2/315*(b*(-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b*(-1120 
*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10+(720*B+2240*C)*sin(1/2*d*x+1/2 
*c)^8*cos(1/2*d*x+1/2*c)+(-504*A-1080*B-2072*C)*sin(1/2*d*x+1/2*c)^6*cos(1 
/2*d*x+1/2*c)+(504*A+840*B+952*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+ 
(-126*A-240*B-168*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-189*A*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d 
*x+1/2*c),2^(1/2))+75*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c) 
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*C*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2 
^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2* 
d*x+1/2*c)/(b*(-1+2*cos(1/2*d*x+1/2*c)^2))^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.89 \[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \, {\left (75 i \, \sqrt {\frac {1}{2}} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 75 i \, \sqrt {\frac {1}{2}} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {\frac {1}{2}} {\left (-9 i \, A - 7 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {\frac {1}{2}} {\left (9 i \, A + 7 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (35 \, C \cos \left (d x + c\right )^{3} + 45 \, B \cos \left (d x + c\right )^{2} + 7 \, {\left (9 \, A + 7 \, C\right )} \cos \left (d x + c\right ) + 75 \, B\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, b^{2} d} \] Input:

integrate(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2 
),x, algorithm="fricas")
 

Output:

-2/315*(75*I*sqrt(1/2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c)) - 75*I*sqrt(1/2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos 
(d*x + c) - I*sin(d*x + c)) + 21*sqrt(1/2)*(-9*I*A - 7*I*C)*sqrt(b)*weiers 
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) 
) + 21*sqrt(1/2)*(9*I*A + 7*I*C)*sqrt(b)*weierstrassZeta(-4, 0, weierstras 
sPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (35*C*cos(d*x + c)^3 + 
45*B*cos(d*x + c)^2 + 7*(9*A + 7*C)*cos(d*x + c) + 75*B)*sqrt(b*cos(d*x + 
c))*sin(d*x + c))/(b^2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**4*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**( 
3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{4}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2 
),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)^4/(b*cos(d* 
x + c))^(3/2), x)
 

Giac [F]

\[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{4}}{\left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)^4/(b*cos(d* 
x + c))^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((cos(c + d*x)^4*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d* 
x))^(3/2),x)
 

Output:

int((cos(c + d*x)^4*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d* 
x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {b}\, \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right )}{b^{2}} \] Input:

int(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2),x)
 

Output:

(sqrt(b)*(int(sqrt(cos(c + d*x))*cos(c + d*x)**4,x)*c + int(sqrt(cos(c + d 
*x))*cos(c + d*x)**3,x)*b + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*a))/ 
b**2