\(\int \frac {\cos (c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(b \cos (c+d x))^{5/2}} \, dx\) [283]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 39, antiderivative size = 116 \[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=-\frac {2 (A-C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{b^2 d \sqrt {b \cos (c+d x)}} \] Output:

-2*(A-C)*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^3/d/ 
cos(d*x+c)^(1/2)+2*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2 
))/b^2/d/(b*cos(d*x+c))^(1/2)+2*A*sin(d*x+c)/b^2/d/(b*cos(d*x+c))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.20 (sec) , antiderivative size = 807, normalized size of antiderivative = 6.96 \[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[c 
+ d*x])^(5/2),x]
 

Output:

((Cos[c + d*x]^2*(B + C*Cos[c + d*x] + A*Sec[c + d*x])*((-2*(-2*A + C + C* 
Cos[2*c])*Csc[c]*Sec[c])/d + (4*A*Sec[c]*Sec[c + d*x]*Sin[d*x])/d))/(Sqrt[ 
b*Cos[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])) - (4*B* 
Cos[c + d*x]^(3/2)*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - A 
rcTan[Cot[c]]]^2]*(B + C*Cos[c + d*x] + A*Sec[c + d*x])*Sec[d*x - ArcTan[C 
ot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[ 
c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqr 
t[b*Cos[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] + C*Cos[2*c + 2*d*x])*Sqrt[1 
 + Cot[c]^2]) + (2*A*Cos[c + d*x]^(3/2)*Csc[c]*(B + C*Cos[c + d*x] + A*Sec 
[c + d*x])*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c 
]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c] 
]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c 
]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]* 
Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 
+ Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]* 
Sqrt[1 + Tan[c]^2]]))/(d*Sqrt[b*Cos[c + d*x]]*(2*A + C + 2*B*Cos[c + d*x] 
+ C*Cos[2*c + 2*d*x])) - (2*C*Cos[c + d*x]^(3/2)*Csc[c]*(B + C*Cos[c + d*x 
] + A*Sec[c + d*x])*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + Arc 
Tan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcT 
an[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ...
 

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.282, Rules used = {2030, 3042, 3500, 27, 3042, 3227, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\int \frac {C \cos ^2(c+d x)+B \cos (c+d x)+A}{(b \cos (c+d x))^{3/2}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+A}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {\frac {2 \int \frac {b^2 B-b^2 (A-C) \cos (c+d x)}{2 \sqrt {b \cos (c+d x)}}dx}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {b^2 B-b^2 (A-C) \cos (c+d x)}{\sqrt {b \cos (c+d x)}}dx}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {b^2 B-b^2 (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {b^2 B \int \frac {1}{\sqrt {b \cos (c+d x)}}dx-b (A-C) \int \sqrt {b \cos (c+d x)}dx}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {b^2 B \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-b (A-C) \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {\frac {\frac {b^2 B \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{\sqrt {b \cos (c+d x)}}-\frac {b (A-C) \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)}}}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {b^2 B \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}-\frac {b (A-C) \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)}}}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {b^2 B \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {b \cos (c+d x)}}-\frac {2 b (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {2 b^2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d \sqrt {b \cos (c+d x)}}-\frac {2 b (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}}{b^3}+\frac {2 A \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}}{b}\)

Input:

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[c + d*x] 
)^(5/2),x]
 

Output:

(((-2*b*(A - C)*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Co 
s[c + d*x]]) + (2*b^2*B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(d*S 
qrt[b*Cos[c + d*x]]))/b^3 + (2*A*Sin[c + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])) 
/b
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(261\) vs. \(2(109)=218\).

Time = 0.26 (sec) , antiderivative size = 262, normalized size of antiderivative = 2.26

method result size
default \(\frac {2 \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b}\, \left (2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{b^{2} \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(262\)
parts \(-\frac {2 A \left (-2 \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{b^{2} \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 B \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b^{2} \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}+\frac {2 C \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b^{2} \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(488\)

Input:

int(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x,meth 
od=_RETURNVERBOSE)
 

Output:

2/b^2*(-2*b*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2*b)^(1/2)*(2*A*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/ 
2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+ 
1/2*c),2^(1/2))+C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-s 
in(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(-1+2*cos(1/2*d*x+1/2*c) 
^2))^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.59 \[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=-\frac {2 \, {\left (i \, \sqrt {\frac {1}{2}} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {\frac {1}{2}} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \sqrt {\frac {1}{2}} {\left (i \, A - i \, C\right )} \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {\frac {1}{2}} {\left (-i \, A + i \, C\right )} \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \sqrt {b \cos \left (d x + c\right )} A \sin \left (d x + c\right )\right )}}{b^{3} d \cos \left (d x + c\right )} \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2), 
x, algorithm="fricas")
 

Output:

-2*(I*sqrt(1/2)*B*sqrt(b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x 
+ c) + I*sin(d*x + c)) - I*sqrt(1/2)*B*sqrt(b)*cos(d*x + c)*weierstrassPIn 
verse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + sqrt(1/2)*(I*A - I*C)*sqrt(b 
)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) + I*sin(d*x + c))) + sqrt(1/2)*(-I*A + I*C)*sqrt(b)*cos(d*x + c)*weier 
strassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c) 
)) - sqrt(b*cos(d*x + c))*A*sin(d*x + c))/(b^3*d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(5/2 
),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2), 
x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x 
+ c))^(5/2), x)
 

Giac [F]

\[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2), 
x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)/(b*cos(d*x 
+ c))^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d*x) 
)^(5/2),x)
 

Output:

int((cos(c + d*x)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(b*cos(c + d*x) 
)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\cos (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx=\frac {\sqrt {b}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) c \right )}{b^{3}} \] Input:

int(cos(d*x+c)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x)
 

Output:

(sqrt(b)*(int(sqrt(cos(c + d*x))/cos(c + d*x),x)*b + int(sqrt(cos(c + d*x) 
)/cos(c + d*x)**2,x)*a + int(sqrt(cos(c + d*x)),x)*c))/b**3