\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx\) [287]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 188 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=-\frac {2 (3 A+5 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b^4 d \sqrt {\cos (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^3 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}+\frac {2 B \sin (c+d x)}{3 b^2 d (b \cos (c+d x))^{3/2}}+\frac {2 (3 A+5 C) \sin (c+d x)}{5 b^3 d \sqrt {b \cos (c+d x)}} \] Output:

-2/5*(3*A+5*C)*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/ 
b^4/d/cos(d*x+c)^(1/2)+2/3*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2* 
c,2^(1/2))/b^3/d/(b*cos(d*x+c))^(1/2)+2/5*A*sin(d*x+c)/b/d/(b*cos(d*x+c))^ 
(5/2)+2/3*B*sin(d*x+c)/b^2/d/(b*cos(d*x+c))^(3/2)+2/5*(3*A+5*C)*sin(d*x+c) 
/b^3/d/(b*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.63 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\frac {2 \left (-3 (3 A+5 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+9 A \sin (c+d x)+15 C \sin (c+d x)+5 B \tan (c+d x)+3 A \sec (c+d x) \tan (c+d x)\right )}{15 b^3 d \sqrt {b \cos (c+d x)}} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(b*Cos[c + d*x])^(7/2),x 
]
 

Output:

(2*(-3*(3*A + 5*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 5*B*Sqrt 
[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 9*A*Sin[c + d*x] + 15*C*Sin[c + 
 d*x] + 5*B*Tan[c + d*x] + 3*A*Sec[c + d*x]*Tan[c + d*x]))/(15*b^3*d*Sqrt[ 
b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.03, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3121, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {2 \int \frac {5 B b^2+(3 A+5 C) \cos (c+d x) b^2}{2 (b \cos (c+d x))^{5/2}}dx}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {5 B b^2+(3 A+5 C) \cos (c+d x) b^2}{(b \cos (c+d x))^{5/2}}dx}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {5 B b^2+(3 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right ) b^2}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {b (3 A+5 C) \int \frac {1}{(b \cos (c+d x))^{3/2}}dx+5 b^2 B \int \frac {1}{(b \cos (c+d x))^{5/2}}dx}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (3 A+5 C) \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx+5 b^2 B \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \cos (c+d x)}dx}{b^2}\right )+5 b^2 B \left (\frac {\int \frac {1}{\sqrt {b \cos (c+d x)}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\right )+5 b^2 B \left (\frac {\int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)}}\right )+5 b^2 B \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)}}\right )+5 b^2 B \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {5 b^2 B \left (\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )+b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {b (3 A+5 C) \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )+5 b^2 B \left (\frac {2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )}{5 b^3}+\frac {2 A \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(b*Cos[c + d*x])^(7/2),x]
 

Output:

(2*A*Sin[c + d*x])/(5*b*d*(b*Cos[c + d*x])^(5/2)) + (5*b^2*B*((2*Sqrt[Cos[ 
c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*b^2*d*Sqrt[b*Cos[c + d*x]]) + (2*S 
in[c + d*x])/(3*b*d*(b*Cos[c + d*x])^(3/2))) + b*(3*A + 5*C)*((-2*Sqrt[b*C 
os[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]]) + (2*Si 
n[c + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])))/(5*b^3)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(806\) vs. \(2(167)=334\).

Time = 0.44 (sec) , antiderivative size = 807, normalized size of antiderivative = 4.29

method result size
default \(\text {Expression too large to display}\) \(807\)
parts \(\text {Expression too large to display}\) \(807\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/15*(b*(-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b^4/sin(1 
/2*d*x+1/2*c)^3/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2* 
d*x+1/2*c)^2-1)*(72*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-36*A*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x 
+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-20*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin 
(1/2*d*x+1/2*c)^4+120*C*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-60*C*Ellip 
ticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d 
*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-72*A*cos(1/2*d*x+1/2*c)*sin(1/2* 
d*x+1/2*c)^4+36*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-20*B*cos( 
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+20*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli 
pticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2 
*d*x+1/2*c)^2-120*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+60*C*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+ 
1/2*c)^2-9*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2) 
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+10*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x 
+1/2*c)^2-5*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2 
)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+30*C*sin(1/2*d*x+1/2*c)^2*cos(1...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.19 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {\frac {1}{2}} B \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {\frac {1}{2}} B \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {\frac {1}{2}} {\left (3 i \, A + 5 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {\frac {1}{2}} {\left (-3 i \, A - 5 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, {\left (3 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{2} + 5 \, B \cos \left (d x + c\right ) + 3 \, A\right )} \sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, b^{4} d \cos \left (d x + c\right )^{3}} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x, algorith 
m="fricas")
 

Output:

-2/15*(5*I*sqrt(1/2)*B*sqrt(b)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, c 
os(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(1/2)*B*sqrt(b)*cos(d*x + c)^3*wei 
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*sqrt(1/2)*(3*I* 
A + 5*I*C)*sqrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInver 
se(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*sqrt(1/2)*(-3*I*A - 5*I*C)*s 
qrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co 
s(d*x + c) - I*sin(d*x + c))) - (3*(3*A + 5*C)*cos(d*x + c)^2 + 5*B*cos(d* 
x + c) + 3*A)*sqrt(b*cos(d*x + c))*sin(d*x + c))/(b^4*d*cos(d*x + c)^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\left (b \cos \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(b*cos(d*x + c))^(7/2), 
x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\left (b \cos \left (d x + c\right )\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(b*cos(d*x + c))^(7/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\left (b\,\cos \left (c+d\,x\right )\right )}^{7/2}} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(b*cos(c + d*x))^(7/2),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(b*cos(c + d*x))^(7/2), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/2}} \, dx=\frac {\sqrt {b}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) c \right )}{b^{4}} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(7/2),x)
 

Output:

(sqrt(b)*(int(sqrt(cos(c + d*x))/cos(c + d*x)**4,x)*a + int(sqrt(cos(c + d 
*x))/cos(c + d*x)**3,x)*b + int(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*c))/ 
b**4