\(\int \sqrt {b \cos (c+d x)} (A+C \cos ^2(c+d x)) \, dx\) [18]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 77 \[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {2 (5 A+3 C) \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 C (b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b d} \] Output:

2/5*(5*A+3*C)*(b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d 
/cos(d*x+c)^(1/2)+2/5*C*(b*cos(d*x+c))^(3/2)*sin(d*x+c)/b/d
 

Mathematica [A] (verified)

Time = 0.48 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.91 \[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {\sqrt {b \cos (c+d x)} \left (2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+C \sqrt {\cos (c+d x)} \sin (2 (c+d x))\right )}{5 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[Sqrt[b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2),x]
 

Output:

(Sqrt[b*Cos[c + d*x]]*(2*(5*A + 3*C)*EllipticE[(c + d*x)/2, 2] + C*Sqrt[Co 
s[c + d*x]]*Sin[2*(c + d*x)]))/(5*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3042, 3493, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3493

\(\displaystyle \frac {1}{5} (5 A+3 C) \int \sqrt {b \cos (c+d x)}dx+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} (5 A+3 C) \int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {(5 A+3 C) \sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(5 A+3 C) \sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}}+\frac {2 C \sin (c+d x) (b \cos (c+d x))^{3/2}}{5 b d}\)

Input:

Int[Sqrt[b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2),x]
 

Output:

(2*(5*A + 3*C)*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[C 
os[c + d*x]]) + (2*C*(b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*b*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3493
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*( 
x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f 
*(m + 2))), x] + Simp[(A*(m + 2) + C*(m + 1))/(m + 2)   Int[(b*Sin[e + f*x] 
)^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(260\) vs. \(2(69)=138\).

Time = 2.09 (sec) , antiderivative size = 261, normalized size of antiderivative = 3.39

method result size
default \(\frac {2 \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \left (8 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-8 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(261\)
parts \(\frac {2 A \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 C \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, b \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(355\)

Input:

int((b*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2),x,method=_RETURNVERBOSE)
 

Output:

2/5*(b*(-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*(8*C*sin( 
1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-8*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1 
/2*c)+5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El 
lipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*C*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1 
/2*c)+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El 
lipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d 
*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(-1+2*cos(1/2*d*x+1/2*c)^2))^(1/ 
2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.32 \[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (\sqrt {b \cos \left (d x + c\right )} C \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {\frac {1}{2}} {\left (-5 i \, A - 3 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - \sqrt {\frac {1}{2}} {\left (5 i \, A + 3 i \, C\right )} \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )\right )}}{5 \, d} \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2),x, algorithm="fricas")
 

Output:

2/5*(sqrt(b*cos(d*x + c))*C*cos(d*x + c)*sin(d*x + c) - sqrt(1/2)*(-5*I*A 
- 3*I*C)*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
 + c) + I*sin(d*x + c))) - sqrt(1/2)*(5*I*A + 3*I*C)*sqrt(b)*weierstrassZe 
ta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate((b*cos(d*x+c))**(1/2)*(A+C*cos(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right )} \,d x } \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c)), x)
 

Giac [F]

\[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right )} \,d x } \] Input:

integrate((b*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\int \left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {b\,\cos \left (c+d\,x\right )} \,d x \] Input:

int((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(1/2),x)
 

Output:

int((A + C*cos(c + d*x)^2)*(b*cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx=\sqrt {b}\, \left (\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) c \right ) \] Input:

int((b*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2),x)
                                                                                    
                                                                                    
 

Output:

sqrt(b)*(int(sqrt(cos(c + d*x)),x)*a + int(sqrt(cos(c + d*x))*cos(c + d*x) 
**2,x)*c)