\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx\) [67]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 73 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}} \] Output:

2/3*(A+3*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d/(b*c 
os(d*x+c))^(1/2)+2/3*A*b*sin(d*x+c)/d/(b*cos(d*x+c))^(3/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.42 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.93 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=-\frac {4 b \left (A+C \cos ^2(c+d x)\right ) \left ((A+3 C) \cos ^2(c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c)))-A \sqrt {\csc ^2(c)} \sin (c+d x)\right )}{3 d (b \cos (c+d x))^{3/2} (2 A+C+C \cos (2 (c+d x))) \sqrt {\csc ^2(c)}} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b*Cos[c + d*x]],x]
 

Output:

(-4*b*(A + C*Cos[c + d*x]^2)*((A + 3*C)*Cos[c + d*x]^2*Sqrt[Cos[d*x - ArcT 
an[Cot[c]]]^2]*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTa 
n[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]] - A*Sqrt[Csc[c]^2]*Sin[c + d*x]))/ 
(3*d*(b*Cos[c + d*x])^(3/2)*(2*A + C + C*Cos[2*(c + d*x)])*Sqrt[Csc[c]^2])
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3042, 2030, 3491, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^2 \int \frac {C \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )^2+A}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3491

\(\displaystyle b^2 \left (\frac {(A+3 C) \int \frac {1}{\sqrt {b \cos (c+d x)}}dx}{3 b^2}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {(A+3 C) \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^2 \left (\frac {(A+3 C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {(A+3 C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b^2 \left (\frac {2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b*Cos[c + d*x]],x]
 

Output:

b^2*((2*(A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*b^2*d*S 
qrt[b*Cos[c + d*x]]) + (2*A*Sin[c + d*x])/(3*b*d*(b*Cos[c + d*x])^(3/2)))
 

Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3491
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x 
_)]^2), x_Symbol] :> Simp[A*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m 
+ 1))), x] + Simp[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1))   Int[(b*Sin[e + f* 
x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(290\) vs. \(2(64)=128\).

Time = 0.31 (sec) , antiderivative size = 291, normalized size of antiderivative = 3.99

method result size
default \(-\frac {2 \left (-2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A +3 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(291\)
parts \(-\frac {2 A \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}-\frac {2 C \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {b \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}\, d}\) \(381\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/3*(-2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*EllipticF(cos(1/2*d*x 
+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(A+3*C)*sin(1/2*d*x+1/2*c)^2+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/ 
2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2)))*(b*(-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1 
/2)/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(-1+2*cos(1/2 
*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(b*(-1+2*cos(1/2*d*x+1/2*c)^2))^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.59 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=-\frac {2 \, {\left (\sqrt {\frac {1}{2}} {\left (i \, A + 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {\frac {1}{2}} {\left (-i \, A - 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - \sqrt {b \cos \left (d x + c\right )} A \sin \left (d x + c\right )\right )}}{3 \, b d \cos \left (d x + c\right )^{2}} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorith 
m="fricas")
 

Output:

-2/3*(sqrt(1/2)*(I*A + 3*I*C)*sqrt(b)*cos(d*x + c)^2*weierstrassPInverse(- 
4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(1/2)*(-I*A - 3*I*C)*sqrt(b)*co 
s(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - s 
qrt(b*cos(d*x + c))*A*sin(d*x + c))/(b*d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {b \cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**2/(b*cos(d*x+c))**(1/2),x)
 

Output:

Integral((A + C*cos(c + d*x)**2)*sec(c + d*x)**2/sqrt(b*cos(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)
 

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^2\,\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x))^(1/2)),x)
 

Output:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {\sqrt {b}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) c \right )}{b} \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x)
 

Output:

(sqrt(b)*(int((sqrt(cos(c + d*x))*sec(c + d*x)**2)/cos(c + d*x),x)*a + int 
(sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x)**2,x)*c))/b