\(\int \frac {(A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [1050]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 271 \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a b \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}+\frac {2 A \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \] Output:

-2*(A*b^2-a*(B*b-C*a))*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c) 
,2^(1/2)*(b/(a+b))^(1/2))/a/b/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+2 
*C*((a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*(b 
/(a+b))^(1/2))/b/d/(a+b*cos(d*x+c))^(1/2)+2*A*((a+b*cos(d*x+c))/(a+b))^(1/ 
2)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/2))/a/d/(a+b*cos(d 
*x+c))^(1/2)+2*(A*b^2-a*(B*b-C*a))*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c 
))^(1/2)
 

Mathematica [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx \] Input:

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Co 
s[c + d*x])^(3/2),x]
 

Output:

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Co 
s[c + d*x])^(3/2), x]
 

Rubi [A] (verified)

Time = 2.22 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.08, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.439, Rules used = {3042, 3534, 27, 3042, 3538, 25, 3042, 3134, 3042, 3132, 3481, 3042, 3142, 3042, 3140, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {2 \int \frac {\left (-\left (\left (A b^2-a (b B-a C)\right ) \cos ^2(c+d x)\right )-a (A b+C b-a B) \cos (c+d x)+A \left (a^2-b^2\right )\right ) \sec (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (-\left (\left (A b^2-a (b B-a C)\right ) \cos ^2(c+d x)\right )-a (A b+C b-a B) \cos (c+d x)+A \left (a^2-b^2\right )\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (a (b B-a C)-A b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2-a (A b+C b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )+A \left (a^2-b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {-\frac {\int -\frac {\left (A b \left (a^2-b^2\right )+a C \cos (c+d x) \left (a^2-b^2\right )\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {\left (A b^2-a (b B-a C)\right ) \int \sqrt {a+b \cos (c+d x)}dx}{b}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {\left (A b \left (a^2-b^2\right )+a C \cos (c+d x) \left (a^2-b^2\right )\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {\left (A b^2-a (b B-a C)\right ) \int \sqrt {a+b \cos (c+d x)}dx}{b}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {A b \left (a^2-b^2\right )+a C \sin \left (c+d x+\frac {\pi }{2}\right ) \left (a^2-b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {\left (A b^2-a (b B-a C)\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\int \frac {A b \left (a^2-b^2\right )+a C \sin \left (c+d x+\frac {\pi }{2}\right ) \left (a^2-b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {A b \left (a^2-b^2\right )+a C \sin \left (c+d x+\frac {\pi }{2}\right ) \left (a^2-b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {\left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {\int \frac {A b \left (a^2-b^2\right )+a C \sin \left (c+d x+\frac {\pi }{2}\right ) \left (a^2-b^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {A b \left (a^2-b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx+a C \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A b \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a C \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {A b \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A b \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {A b \left (a^2-b^2\right ) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3286

\(\displaystyle \frac {\frac {\frac {A b \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {A b \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \cos (c+d x)}}+\frac {2 a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}+\frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}+\frac {\frac {\frac {2 A b \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}+\frac {2 a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}}{a \left (a^2-b^2\right )}\)

Input:

Int[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + 
d*x])^(3/2),x]
 

Output:

((-2*(A*b^2 - a*(b*B - a*C))*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/ 
2, (2*b)/(a + b)])/(b*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) + ((2*a*(a^2 - 
 b^2)*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a 
 + b)])/(d*Sqrt[a + b*Cos[c + d*x]]) + (2*A*b*(a^2 - b^2)*Sqrt[(a + b*Cos[ 
c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + 
b*Cos[c + d*x]]))/b)/(a*(a^2 - b^2)) + (2*(A*b^2 - a*(b*B - a*C))*Sin[c + 
d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(545\) vs. \(2(271)=542\).

Time = 3.83 (sec) , antiderivative size = 546, normalized size of antiderivative = 2.01

method result size
default \(-\frac {\sqrt {-\left (-2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )}{b \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a -b}{a -b}}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), 2, \sqrt {-\frac {2 b}{a -b}}\right )}{a \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 \left (A \,b^{2}-B a b +a^{2} C \right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{b a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right ) \left (a^{2}-b^{2}\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a +b}\, d}\) \(546\)
parts \(\text {Expression too large to display}\) \(968\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x,me 
thod=_RETURNVERBOSE)
 

Output:

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2* 
b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2 
*d*x+1/2*c),(-2*b/(a-b))^(1/2))-2*A/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*c 
os(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin 
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2 
))+2/b*(A*b^2-B*a*b+C*a^2)/a/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2* 
b-a-b)/(a^2-b^2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1 
/2)*(2*b*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2* 
d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)* 
sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2 
*b/(a-b))^(1/2))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2 
)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2 
),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)/(a+b*cos(d*x+c))**(3 
/2),x)
 

Output:

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)/(a + b*cos( 
c + d*x))**(3/2), x)
 

Maxima [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2 
),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)/(b*cos(d*x 
+ c) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sec(d*x + c)/(b*cos(d*x 
+ c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\cos \left (c+d\,x\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + b*cos(c + d 
*x))^(3/2)),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + b*cos(c + d 
*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) a \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*cos(c + d*x)*sec(c + d*x))/(cos(c + d*x)**2* 
b**2 + 2*cos(c + d*x)*a*b + a**2),x)*b + int((sqrt(cos(c + d*x)*b + a)*cos 
(c + d*x)**2*sec(c + d*x))/(cos(c + d*x)**2*b**2 + 2*cos(c + d*x)*a*b + a* 
*2),x)*c + int((sqrt(cos(c + d*x)*b + a)*sec(c + d*x))/(cos(c + d*x)**2*b* 
*2 + 2*cos(c + d*x)*a*b + a**2),x)*a