\(\int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [1071]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 190 \[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {2 (3 A b+3 a B+5 b C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (5 a A+7 b B+7 a C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (5 a A+7 b B+7 a C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (3 A b+3 a B+5 b C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \] Output:

-2/5*(3*A*b+3*B*a+5*C*b)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*(5*A 
*a+7*B*b+7*C*a)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/7*a*A*sin(d*x+c 
)/d/cos(d*x+c)^(7/2)+2/5*(A*b+B*a)*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/21*(5*A 
*a+7*B*b+7*C*a)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*(3*A*b+3*B*a+5*C*b)*sin( 
d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 5.67 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.91 \[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-42 (3 A b+3 a B+5 b C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 (5 a A+7 b B+7 a C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {(110 a A+70 b B+70 a C+21 (13 A b+13 a B+15 b C) \cos (c+d x)+10 (5 a A+7 b B+7 a C) \cos (2 (c+d x))+63 A b \cos (3 (c+d x))+63 a B \cos (3 (c+d x))+105 b C \cos (3 (c+d x))) \sin (c+d x)}{2 \cos ^{\frac {7}{2}}(c+d x)}}{105 d} \] Input:

Integrate[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/C 
os[c + d*x]^(9/2),x]
 

Output:

(-42*(3*A*b + 3*a*B + 5*b*C)*EllipticE[(c + d*x)/2, 2] + 10*(5*a*A + 7*b*B 
 + 7*a*C)*EllipticF[(c + d*x)/2, 2] + ((110*a*A + 70*b*B + 70*a*C + 21*(13 
*A*b + 13*a*B + 15*b*C)*Cos[c + d*x] + 10*(5*a*A + 7*b*B + 7*a*C)*Cos[2*(c 
 + d*x)] + 63*A*b*Cos[3*(c + d*x)] + 63*a*B*Cos[3*(c + d*x)] + 105*b*C*Cos 
[3*(c + d*x)])*Sin[c + d*x])/(2*Cos[c + d*x]^(7/2)))/(105*d)
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.93, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.317, Rules used = {3042, 3510, 27, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 3510

\(\displaystyle \frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}-\frac {2}{7} \int -\frac {7 b C \cos ^2(c+d x)+(5 a A+7 b B+7 a C) \cos (c+d x)+7 (A b+a B)}{2 \cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {7 b C \cos ^2(c+d x)+(5 a A+7 b B+7 a C) \cos (c+d x)+7 (A b+a B)}{\cos ^{\frac {7}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {7 b C \sin \left (c+d x+\frac {\pi }{2}\right )^2+(5 a A+7 b B+7 a C) \sin \left (c+d x+\frac {\pi }{2}\right )+7 (A b+a B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{7} \left (\frac {2}{5} \int \frac {5 (5 a A+7 b B+7 a C)+7 (3 A b+5 C b+3 a B) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 (5 a A+7 b B+7 a C)+7 (3 A b+5 C b+3 a B) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \frac {5 (5 a A+7 b B+7 a C)+7 (3 A b+5 C b+3 a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 (5 a A+7 a C+7 b B) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx+7 (3 a B+3 A b+5 b C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 (5 a A+7 a C+7 b B) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+7 (3 a B+3 A b+5 b C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 (5 a A+7 a C+7 b B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 (3 a B+3 A b+5 b C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 (5 a A+7 a C+7 b B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 (3 a B+3 A b+5 b C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 (5 a A+7 a C+7 b B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 (3 a B+3 A b+5 b C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 (5 a A+7 a C+7 b B) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+7 (3 a B+3 A b+5 b C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {14 (a B+A b) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}\)

Input:

Int[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + 
 d*x]^(9/2),x]
 

Output:

(2*a*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + ((14*(A*b + a*B)*Sin[c + d 
*x])/(5*d*Cos[c + d*x]^(5/2)) + (5*(5*a*A + 7*b*B + 7*a*C)*((2*EllipticF[( 
c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) + 7*(3* 
A*b + 3*a*B + 5*b*C)*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/ 
(d*Sqrt[Cos[c + d*x]])))/5)/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3510
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)*Cos[ 
e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - S 
imp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*( 
m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d + b^2*d*(m 
 + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)) 
))*Sin[e + f*x] - b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; F 
reeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 
 0] && LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(823\) vs. \(2(173)=346\).

Time = 6.94 (sec) , antiderivative size = 824, normalized size of antiderivative = 4.34

method result size
default \(\text {Expression too large to display}\) \(824\)
parts \(\text {Expression too large to display}\) \(1012\)

Input:

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x,me 
thod=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/5*(A*b+B*a)/ 
sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin 
(1/2*d*x+1/2*c)^2-1)*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin 
(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2* 
d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x 
+1/2*c)^4+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2) 
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*cos(1/2*d*x+ 
1/2*c)*sin(1/2*d*x+1/2*c)^2-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*(B*b+C*a)*(-1/6*cos(1/2*d*x+1/2*c)*( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2- 
1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/ 
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x 
+1/2*c),2^(1/2)))+2*C*b/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*s 
in(1/2*d*x+1/2*c)^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*a*A*(-1/56*cos(1/2*d*x+1/ 
2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2 
*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+ 
1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.52 \[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (i \, {\left (5 \, A + 7 \, C\right )} a + 7 i \, B b\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, {\left (5 \, A + 7 \, C\right )} a - 7 i \, B b\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (3 i \, B a + i \, {\left (3 \, A + 5 \, C\right )} b\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (-3 i \, B a - i \, {\left (3 \, A + 5 \, C\right )} b\right )} \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (21 \, {\left (3 \, B a + {\left (3 \, A + 5 \, C\right )} b\right )} \cos \left (d x + c\right )^{3} + 5 \, {\left ({\left (5 \, A + 7 \, C\right )} a + 7 \, B b\right )} \cos \left (d x + c\right )^{2} + 15 \, A a + 21 \, {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )^{4}} \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2 
),x, algorithm="fricas")
 

Output:

-1/105*(5*sqrt(2)*(I*(5*A + 7*C)*a + 7*I*B*b)*cos(d*x + c)^4*weierstrassPI 
nverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-I*(5*A + 7*C)*a 
 - 7*I*B*b)*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin 
(d*x + c)) + 21*sqrt(2)*(3*I*B*a + I*(3*A + 5*C)*b)*cos(d*x + c)^4*weierst 
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
 + 21*sqrt(2)*(-3*I*B*a - I*(3*A + 5*C)*b)*cos(d*x + c)^4*weierstrassZeta( 
-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(21* 
(3*B*a + (3*A + 5*C)*b)*cos(d*x + c)^3 + 5*((5*A + 7*C)*a + 7*B*b)*cos(d*x 
 + c)^2 + 15*A*a + 21*(B*a + A*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x 
 + c))/(d*cos(d*x + c)^4)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(9 
/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2 
),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/cos 
(d*x + c)^(9/2), x)
 

Giac [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/cos 
(d*x + c)^(9/2), x)
 

Mupad [B] (verification not implemented)

Time = 2.60 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.17 \[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {30\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+70\,C\,a\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+42\,B\,a\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{105\,d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {6\,A\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,C\,b\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+10\,B\,b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}} \] Input:

int(((a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + 
 d*x)^(9/2),x)
 

Output:

(30*A*a*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2) + 70*C*a 
*cos(c + d*x)^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2) + 
 42*B*a*cos(c + d*x)*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x 
)^2))/(105*d*cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2)) + (6*A*b*sin(c 
 + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 30*C*b*cos(c + d*x) 
^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2) + 10*B*b*cos(c 
 + d*x)*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(15*d*co 
s(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}}d x \right ) a^{2}+2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) b^{2}+\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b c \] Input:

int((a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x)**5,x)*a**2 + 2*int(sqrt(cos(c + d*x))/ 
cos(c + d*x)**4,x)*a*b + int(sqrt(cos(c + d*x))/cos(c + d*x)**3,x)*a*c + i 
nt(sqrt(cos(c + d*x))/cos(c + d*x)**3,x)*b**2 + int(sqrt(cos(c + d*x))/cos 
(c + d*x)**2,x)*b*c