\(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{a+b \cos (c+d x)} \, dx\) [1097]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 147 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\frac {2 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac {2 \left (b^2 (3 A+C)-3 a (b B-a C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^3 d}-\frac {2 a \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^3 (a+b) d}+\frac {2 C \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b d} \] Output:

2*(B*b-C*a)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d+2/3*(b^2*(3*A+C)-3 
*a*(B*b-C*a))*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/b^3/d-2*a*(A*b^2-a*(B 
*b-C*a))*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/b^3/(a+b)/d+2/3* 
C*cos(d*x+c)^(1/2)*sin(d*x+c)/b/d
 

Mathematica [A] (warning: unable to verify)

Time = 2.45 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.46 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\frac {-\frac {2 (-3 b B+a C) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+\frac {4 (3 A+C) \left ((a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )\right )}{a+b}+4 C \sqrt {\cos (c+d x)} \sin (c+d x)+\frac {6 (b B-a C) \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b^2 \sqrt {\sin ^2(c+d x)}}}{6 b d} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a 
+ b*Cos[c + d*x]),x]
 

Output:

((-2*(-3*b*B + a*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + ( 
4*(3*A + C)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b 
), (c + d*x)/2, 2]))/(a + b) + 4*C*Sqrt[Cos[c + d*x]]*Sin[c + d*x] + (6*(b 
*B - a*C)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)* 
EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/ 
a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x 
]^2]))/(6*b*d)
 

Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.07, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.279, Rules used = {3042, 3528, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 3528

\(\displaystyle \frac {2 \int \frac {3 (b B-a C) \cos ^2(c+d x)+b (3 A+C) \cos (c+d x)+a C}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 (b B-a C) \cos ^2(c+d x)+b (3 A+C) \cos (c+d x)+a C}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 (b B-a C) \sin \left (c+d x+\frac {\pi }{2}\right )^2+b (3 A+C) \sin \left (c+d x+\frac {\pi }{2}\right )+a C}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {\frac {3 (b B-a C) \int \sqrt {\cos (c+d x)}dx}{b}-\frac {\int -\frac {a b C+\left (b^2 (3 A+C)-3 a (b B-a C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {a b C+\left (b^2 (3 A+C)-3 a (b B-a C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}+\frac {3 (b B-a C) \int \sqrt {\cos (c+d x)}dx}{b}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a b C+\left (b^2 (3 A+C)-3 a (b B-a C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {3 (b B-a C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\int \frac {a b C+\left (b^2 (3 A+C)-3 a (b B-a C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {6 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {\frac {\frac {\left (b^2 (3 A+C)-3 a (b B-a C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}-\frac {3 a \left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{b}+\frac {6 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\left (b^2 (3 A+C)-3 a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {3 a \left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}+\frac {6 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (b^2 (3 A+C)-3 a (b B-a C)\right )}{b d}-\frac {3 a \left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}}{b}+\frac {6 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {\frac {\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (b^2 (3 A+C)-3 a (b B-a C)\right )}{b d}-\frac {6 a \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b d (a+b)}}{b}+\frac {6 (b B-a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}}{3 b}+\frac {2 C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b d}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Co 
s[c + d*x]),x]
 

Output:

((6*(b*B - a*C)*EllipticE[(c + d*x)/2, 2])/(b*d) + ((2*(b^2*(3*A + C) - 3* 
a*(b*B - a*C))*EllipticF[(c + d*x)/2, 2])/(b*d) - (6*a*(A*b^2 - a*(b*B - a 
*C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b*(a + b)*d))/b)/(3*b) + 
(2*C*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*b*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3528
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + 
n + 2))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A* 
d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2) - C*(a 
*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
 n + 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n} 
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[ 
m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(980\) vs. \(2(146)=292\).

Time = 5.73 (sec) , antiderivative size = 981, normalized size of antiderivative = 6.67

method result size
default \(\text {Expression too large to display}\) \(981\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x,me 
thod=_RETURNVERBOSE)
 

Output:

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*C*b^2*cos( 
1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a-4*C*b^3*cos(1/2*d*x+1/2*c)*sin(1/2*d 
*x+1/2*c)^4+3*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2 
*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a*b^2-3*A*(2*sin(1/2*d*x+1/2*c)^ 
2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*b^3-3*A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c) 
,-2*b/(a-b),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a*b^2-3*B*(2*sin(1/2*d*x 
+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2* 
c)^2)^(1/2)*a^2*b+3*B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a*b^2-3*B*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*a*b^2+3*B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x 
+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b^3+3*B*(2*sin(1/2*d*x+1/2*c 
)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*(sin(1/2*d* 
x+1/2*c)^2)^(1/2)*a^2*b-2*C*b^2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*a+ 
2*C*b^3*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+3*C*(2*sin(1/2*d*x+1/2*c)^ 
2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*a^3-3*C*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c), 
2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*b+C*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c) 
),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+ 
c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c) 
),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*co 
s(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c) 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*co 
s(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{a+b\,\cos \left (c+d\,x\right )} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*co 
s(c + d*x)),x)
 

Output:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*co 
s(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right ) b +a}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \right ) c \] Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)*b + a),x)*a + int((sqrt(cos(c + d*x)) 
*cos(c + d*x))/(cos(c + d*x)*b + a),x)*b + int((sqrt(cos(c + d*x))*cos(c + 
 d*x)**2)/(cos(c + d*x)*b + a),x)*c