\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\) [1099]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 118 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=-\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {2 C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b d}-\frac {2 \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a b (a+b) d}+\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}} \] Output:

-2*A*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+2*C*InverseJacobiAM(1/2*d*x 
+1/2*c,2^(1/2))/b/d-2*(A*b^2-a*(B*b-C*a))*EllipticPi(sin(1/2*d*x+1/2*c),2* 
b/(a+b),2^(1/2))/a/b/(a+b)/d+2*A*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 1.68 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.80 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {\frac {2 (-3 A b+2 a B) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}-\frac {4 a (A-C) \left ((a+b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )\right )}{b (a+b)}+\frac {4 A \sin (c+d x)}{\sqrt {\cos (c+d x)}}-\frac {2 A \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a b \sqrt {\sin ^2(c+d x)}}}{2 a d} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + 
 b*Cos[c + d*x])),x]
 

Output:

((2*(-3*A*b + 2*a*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) - 
(4*a*(A - C)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + 
b), (c + d*x)/2, 2]))/(b*(a + b)) + (4*A*Sin[c + d*x])/Sqrt[Cos[c + d*x]] 
- (2*A*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*Ell 
ipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), 
 ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b*Sqrt[Sin[c + d*x]^2]) 
)/(2*a*d)
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.279, Rules used = {3042, 3534, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {2 \int -\frac {A b \cos ^2(c+d x)+a (A-C) \cos (c+d x)+A b-a B}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A b \cos ^2(c+d x)+a (A-C) \cos (c+d x)+A b-a B}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A b \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )+A b-a B}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {A \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {b (A b-a B)-a b C \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {b (A b-a B)-a b C \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}+A \int \sqrt {\cos (c+d x)}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {b (A b-a B)-a b C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+A \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {b (A b-a B)-a b C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx-a C \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-a C \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\left (A b^2-a (b B-a C)\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {2 a C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\frac {2 \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}-\frac {2 a C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(3/2)*(a + b*Cos 
[c + d*x])),x]
 

Output:

-(((2*A*EllipticE[(c + d*x)/2, 2])/d + ((-2*a*C*EllipticF[(c + d*x)/2, 2]) 
/d + (2*(A*b^2 - a*(b*B - a*C))*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]) 
/((a + b)*d))/b)/a) + (2*A*Sin[c + d*x])/(a*d*Sqrt[Cos[c + d*x]])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(382\) vs. \(2(121)=242\).

Time = 3.80 (sec) , antiderivative size = 383, normalized size of antiderivative = 3.25

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\frac {4 \left (A \,b^{2}-B a b +a^{2} C \right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(383\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x,me 
thod=_RETURNVERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2* 
A/a/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)- 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(co 
s(1/2*d*x+1/2*c),2^(1/2)))+4*(A*b^2-B*a*b+C*a^2)/a/(-2*a*b+2*b^2)*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b) 
,2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c) 
),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2)/(a+b*cos(d*x+ 
c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c) 
),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*co 
s(d*x + c)^(3/2)), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c) 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*co 
s(d*x + c)^(3/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos 
(c + d*x))),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(3/2)*(a + b*cos 
(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3} b +\cos \left (d x +c \right )^{2} a}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} b +\cos \left (d x +c \right ) a}d x \right ) b \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x)
 

Output:

int(sqrt(cos(c + d*x))/(cos(c + d*x)*b + a),x)*c + int(sqrt(cos(c + d*x))/ 
(cos(c + d*x)**3*b + cos(c + d*x)**2*a),x)*a + int(sqrt(cos(c + d*x))/(cos 
(c + d*x)**2*b + cos(c + d*x)*a),x)*b