\(\int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\) [1144]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 46, antiderivative size = 256 \[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d}+\frac {4 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

-2*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/ 
2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*( 
a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d+4*(a+b)^(1/2)*cot(d*x+c)*EllipticF((a+b* 
cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1 
-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d+2*(a+b*cos(d*x+ 
c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
 

Mathematica [A] (verified)

Time = 6.62 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.62 \[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=\frac {\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {a+b \cos (c+d x)} \left (\frac {2 E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )}{\sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}}}+\frac {\sec \left (\frac {1}{2} (c+d x)\right ) \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )}{\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}\right )}{d \sqrt {\cos (c+d x)}} \] Input:

Integrate[(a + a*Cos[c + d*x] + 2*b*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sq 
rt[a + b*Cos[c + d*x]]),x]
 

Output:

(Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[a + b*Cos[c + d*x]]*((2*Ellipt 
icE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])/Sqrt[(a + b*Cos[c + d*x]) 
/((a + b)*(1 + Cos[c + d*x]))] + (Sec[(c + d*x)/2]*(-Sin[(c + d*x)/2] + Si 
n[(3*(c + d*x))/2]))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]))/(d*Sqrt[Cos[c 
 + d*x]])
 

Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 3540, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \cos (c+d x)+a+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right )+a+2 b \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3540

\(\displaystyle \frac {\int -\frac {2 (a b-a b \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}+\frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a b-a b \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a b-a b \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-2 a b \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-2 a b \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {4 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{b}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\frac {2 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {4 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{b}\)

Input:

Int[(a + a*Cos[c + d*x] + 2*b*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + 
 b*Cos[c + d*x]]),x]
 

Output:

-(((2*(a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c 
 + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 
 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - ( 
4*b*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sq 
rt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d 
*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d)/b) + (2*Sqrt[a + b 
*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3540
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f 
*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d)   Int[(1/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 
 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + 
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 254, normalized size of antiderivative = 0.99

method result size
default \(-\frac {2 \left (\left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )-\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right ) b -\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) a \right ) \sqrt {\cos \left (d x +c \right )}}{d \sqrt {a +b \cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(254\)
parts \(-\frac {2 a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}}{d \sqrt {\cos \left (d x +c \right )}\, \sqrt {a +b \cos \left (d x +c \right )}}-\frac {2 a \left (-\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+2 \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right )}{d \sqrt {\cos \left (d x +c \right )}\, \sqrt {a +b \cos \left (d x +c \right )}}-\frac {2 \left (\left (-2 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )-2\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )-\sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} b -\sin \left (d x +c \right ) \cos \left (d x +c \right ) a \right ) \sqrt {a +b \cos \left (d x +c \right )}}{d \sqrt {\cos \left (d x +c \right )}\, \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+a \right )}\) \(642\)

Input:

int((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1 
/2),x,method=_RETURNVERBOSE)
 

Output:

-2/d*((1+cos(d*x+c))*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*Ell 
ipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))+(1+cos(d*x+c))*(1/(a+b 
)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b*EllipticE(-csc(d*x+c)+cot(d*x+c 
),(-(a-b)/(a+b))^(1/2))-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d 
*x+c)*b-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*a)*cos(d*x+c)^(1/2)/( 
a+b*cos(d*x+c))^(1/2)/(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
 

Fricas [F]

\[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+ 
c))^(1/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

integral((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)*sqrt(b*cos(d*x + c) + a 
)*sqrt(cos(d*x + c))/(b*cos(d*x + c)^2 + a*cos(d*x + c)), x)
 

Sympy [F]

\[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {a \cos {\left (c + d x \right )} + a + 2 b \cos ^{2}{\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+b*cos(d* 
x+c))**(1/2),x)
 

Output:

Integral((a*cos(c + d*x) + a + 2*b*cos(c + d*x)**2)/(sqrt(a + b*cos(c + d* 
x))*sqrt(cos(c + d*x))), x)
 

Maxima [F]

\[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+ 
c))^(1/2),x, algorithm="maxima")
 

Output:

integrate((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)/(sqrt(b*cos(d*x + c) + 
 a)*sqrt(cos(d*x + c))), x)
 

Giac [F]

\[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {2 \, b \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) + a}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+ 
c))^(1/2),x, algorithm="giac")
 

Output:

integrate((2*b*cos(d*x + c)^2 + a*cos(d*x + c) + a)/(sqrt(b*cos(d*x + c) + 
 a)*sqrt(cos(d*x + c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {2\,b\,{\cos \left (c+d\,x\right )}^2+a\,\cos \left (c+d\,x\right )+a}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((a + a*cos(c + d*x) + 2*b*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*c 
os(c + d*x))^(1/2)),x)
 

Output:

int((a + a*cos(c + d*x) + 2*b*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*c 
os(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {a+a \cos (c+d x)+2 b \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx=2 \left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right ) b +a}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} b +\cos \left (d x +c \right ) a}d x \right ) a \] Input:

int((a+a*cos(d*x+c)+2*b*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1 
/2),x)
 

Output:

2*int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x))*cos(c + d*x))/(cos(c + 
d*x)*b + a),x)*b + int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos( 
c + d*x)*b + a),x)*a + int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/( 
cos(c + d*x)**2*b + cos(c + d*x)*a),x)*a