\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\) [1185]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 190 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {(3 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(5 A+3 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \] Output:

(3*A+C)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^ 
(1/2)/a/d+1/3*(5*A+3*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^( 
1/2))*sec(d*x+c)^(1/2)/a/d-(3*A+C)*sec(d*x+c)^(1/2)*sin(d*x+c)/a/d+1/3*(5* 
A+3*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d-(A+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d 
/(a+a*cos(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.04 (sec) , antiderivative size = 651, normalized size of antiderivative = 3.43 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{\sqrt {2} d (a+a \cos (c+d x))}-\frac {C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{3 \sqrt {2} d (a+a \cos (c+d x))}+\frac {5 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{3 d (a+a \cos (c+d x))}+\frac {C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{d (a+a \cos (c+d x))}+\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\sec (c+d x)} \left (-\frac {(3 A+C) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {4 A \sec (c) \sec (c+d x) \sin (d x)}{3 d}+\frac {2 (2 A+5 A \cos (c)+3 C \cos (c)) \sec (c) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{a+a \cos (c+d x)} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x]) 
,x]
 

Output:

-((A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c 
+ d*x))]*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + 
 E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2* 
I)*(c + d*x))])*Sec[c/2])/(Sqrt[2]*d*E^(I*d*x)*(a + a*Cos[c + d*x]))) - (C 
*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d* 
x))]*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^( 
(2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*( 
c + d*x))])*Sec[c/2])/(3*Sqrt[2]*d*E^(I*d*x)*(a + a*Cos[c + d*x])) + (5*A* 
Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2] 
*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])) + (C*Cos[c 
/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[ 
c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(d*(a + a*Cos[c + d*x])) + (Cos[c/2 + (d*x 
)/2]^2*Sqrt[Sec[c + d*x]]*(-(((3*A + C)*Cos[d*x]*Csc[c/2]*Sec[c/2])/d) + ( 
2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d + (4*A* 
Sec[c]*Sec[c + d*x]*Sin[d*x])/(3*d) + (2*(2*A + 5*A*Cos[c] + 3*C*Cos[c])*S 
ec[c]*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x])
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.86, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 4709, 3042, 3521, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (c+d x)^{5/2} \left (A+C \cos (c+d x)^2\right )}{a \cos (c+d x)+a}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A+3 C)-a (3 A+C) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A+3 C)-a (3 A+C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A+3 C)-a (3 A+C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (5 A+3 C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx-a (3 A+C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (5 A+3 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-a (3 A+C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (5 A+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a (3 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (5 A+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a (3 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (5 A+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a (3 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (5 A+3 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a (3 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )}{2 a^2}-\frac {(A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-(((A + C)*Sin[c + d*x])/(d*Cos[c + 
 d*x]^(3/2)*(a + a*Cos[c + d*x]))) + (a*(5*A + 3*C)*((2*EllipticF[(c + d*x 
)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) - a*(3*A + C)* 
((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]] 
)))/(2*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(458\) vs. \(2(175)=350\).

Time = 70.19 (sec) , antiderivative size = 459, normalized size of antiderivative = 2.42

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {\left (A +C \right ) \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+2 A \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )-\frac {2 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(459\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*((A+C)*(cos(1 
/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2 
)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1 
/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2* 
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*A*(-1/6*cos(1/2*d*x+1/2 
*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2* 
c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^( 
1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/ 
2*d*x+1/2*c),2^(1/2)))-2*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1) 
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+ 
1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)))/sin(1/2*d*x+1/2*c)/(2*c 
os(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.59 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {{\left (\sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, {\left (3 \, A + C\right )} \cos \left (d x + c\right )^{2} + 4 \, A \cos \left (d x + c\right ) - 2 \, A\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorith 
m="fricas")
 

Output:

1/6*((sqrt(2)*(-5*I*A - 3*I*C)*cos(d*x + c)^2 + sqrt(2)*(-5*I*A - 3*I*C)*c 
os(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + ( 
sqrt(2)*(5*I*A + 3*I*C)*cos(d*x + c)^2 + sqrt(2)*(5*I*A + 3*I*C)*cos(d*x + 
 c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2 
)*(-3*I*A - I*C)*cos(d*x + c)^2 + sqrt(2)*(-3*I*A - I*C)*cos(d*x + c))*wei 
erstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + 
c))) - 3*(sqrt(2)*(3*I*A + I*C)*cos(d*x + c)^2 + sqrt(2)*(3*I*A + I*C)*cos 
(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
- I*sin(d*x + c))) - 2*(3*(3*A + C)*cos(d*x + c)^2 + 4*A*cos(d*x + c) - 2* 
A)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c) 
)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), 
x)
 

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+a\,\cos \left (c+d\,x\right )} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x)),x 
)
 

Output:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x)), 
x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) a}{a} \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x)
 

Output:

(int((sqrt(sec(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**2)/(cos(c + d*x) + 
1),x)*c + int((sqrt(sec(c + d*x))*sec(c + d*x)**2)/(cos(c + d*x) + 1),x)*a 
)/a