\(\int \frac {(A+C \cos ^2(c+d x)) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx\) [1187]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 123 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\frac {(A+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A+C) \sin (c+d x)}{d (a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \] Output:

(A+3*C)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^ 
(1/2)/a/d+(A-C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*se 
c(d*x+c)^(1/2)/a/d-(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.02 (sec) , antiderivative size = 421, normalized size of antiderivative = 3.42 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=-\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (2 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+6 \sqrt {2} C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+\frac {6 \left ((A+2 C) \cos \left (\frac {1}{2} (c-d x)\right )+C \cos \left (\frac {1}{2} (3 c+d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\sec (c+d x)}}-12 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}+12 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}\right )}{6 a d (1+\cos (c+d x))} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x]) 
,x]
 

Output:

-1/6*(Cos[(c + d*x)/2]^2*((2*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)* 
(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c 
 + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7 
/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) + (6*Sqrt[2]*C*Sqrt[E^(I*(c + d*x))/ 
(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 
 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2 
F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) + (6*((A + 2*C)*Cos[(c 
 - d*x)/2] + C*Cos[(3*c + d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2])/Sqr 
t[Sec[c + d*x]] - 12*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[S 
ec[c + d*x]] + 12*C*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[ 
c + d*x]]))/(a*d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.89, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 4709, 3042, 3521, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+C \cos (c+d x)^2\right )}{a \cos (c+d x)+a}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (A-C)+a (A+3 C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (A-C)+a (A+3 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (A-C)+a (A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (A-C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+a (A+3 C) \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A+3 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a (A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a (A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(((2*a*(A + 3*C)*EllipticE[(c + d*x) 
/2, 2])/d + (2*a*(A - C)*EllipticF[(c + d*x)/2, 2])/d)/(2*a^2) - ((A + C)* 
Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(246\) vs. \(2(116)=232\).

Time = 3.09 (sec) , antiderivative size = 247, normalized size of antiderivative = 2.01

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A +2 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-A -C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(247\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x,method=_RETURNV 
ERBOSE)
 

Output:

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2* 
c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*C*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2)))+(2*A+2*C)*sin(1/2*d*x+1/2*c)^4+(-A-C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1 
/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2 
*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.94 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=-\frac {2 \, {\left (A + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A + 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-i \, A - 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorith 
m="fricas")
 

Output:

-1/2*(2*(A + C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(-I*A + I*C)*co 
s(d*x + c) + sqrt(2)*(-I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) - (sqrt(2)*(I*A - I*C)*cos(d*x + c) + sqrt(2)*(I*A - I* 
C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*( 
I*A + 3*I*C)*cos(d*x + c) + sqrt(2)*(I*A + 3*I*C))*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*(-I* 
A - 3*I*C)*cos(d*x + c) + sqrt(2)*(-I*A - 3*I*C))*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + 
c) + a*d)
 

Sympy [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\frac {\int \frac {A \sqrt {\sec {\left (c + d x \right )}}}{\cos {\left (c + d x \right )} + 1}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}}{\cos {\left (c + d x \right )} + 1}\, dx}{a} \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c)),x)
 

Output:

(Integral(A*sqrt(sec(c + d*x))/(cos(c + d*x) + 1), x) + Integral(C*cos(c + 
 d*x)**2*sqrt(sec(c + d*x))/(cos(c + d*x) + 1), x))/a
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a), 
x)
 

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{a \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{a+a\,\cos \left (c+d\,x\right )} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x)),x 
)
                                                                                    
                                                                                    
 

Output:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x)), 
x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{a+a \cos (c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) c}{a} \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c)),x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x) + 1),x)*a + int((sqrt(sec(c + d*x))* 
cos(c + d*x)**2)/(cos(c + d*x) + 1),x)*c)/a