\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [1235]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 175 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \] Output:

2*C*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec 
(d*x+c)^(1/2)/a^(1/2)/d-2^(1/2)*(A+C)*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2 
)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/ 
2)/a^(1/2)/d+2*A*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 4.13 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.43 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\sqrt {2} C \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )-\frac {2 C \sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}+\frac {(A+C) \csc ^3\left (\frac {1}{2} (c+d x)\right ) \left (5 \cos ^2(c+d x) (2+\cos (c+d x)) \left (1-\cos (c+d x)+\text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )-\operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right ) \sin ^2(c+d x)\right )}{10 \cos ^{\frac {5}{2}}(c+d x)}\right )}{d \sqrt {a (1+\cos (c+d x))}} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/Sqrt[a + a*Cos[c + d 
*x]],x]
 

Output:

(2*Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(Sqrt[2]*C*ArcSi 
n[Sqrt[2]*Sin[(c + d*x)/2]] - (2*C*Sin[(c + d*x)/2])/Sqrt[Cos[c + d*x]] + 
((A + C)*Csc[(c + d*x)/2]^3*(5*Cos[c + d*x]^2*(2 + Cos[c + d*x])*(1 - Cos[ 
c + d*x] + ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[c + d*x]* 
Sqrt[2 - 2*Sec[c + d*x]]) - Hypergeometric2F1[2, 5/2, 7/2, -(Sec[c + d*x]* 
Sin[(c + d*x)/2]^2)]*Sin[(c + d*x)/2]^4*Sin[c + d*x]^2))/(10*Cos[c + d*x]^ 
(5/2))))/(d*Sqrt[a*(1 + Cos[c + d*x])])
 

Rubi [A] (verified)

Time = 1.00 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.92, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {3042, 4709, 3042, 3523, 27, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (c+d x)^{3/2} \left (A+C \cos (c+d x)^2\right )}{\sqrt {a \cos (c+d x)+a}}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int -\frac {a A-a C \cos (c+d x)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a A-a C \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a A-a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}\right )\)

\(\Big \downarrow \) 3461

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {a (A+C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx-C \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {a (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {a (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {2 C \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {a (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {2 \sqrt {a} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 3261

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {-\frac {2 a^2 (A+C) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {2 \sqrt {a} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {\frac {\sqrt {2} \sqrt {a} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {2 \sqrt {a} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/Sqrt[a + a*Cos[c + d*x]],x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-(((-2*Sqrt[a]*C*ArcSin[(Sqrt[a]*Si 
n[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (Sqrt[2]*Sqrt[a]*(A + C)*ArcTan 
[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x 
]])])/d)/a) + (2*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + 
d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 2.81 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.19

method result size
parts \(\frac {A \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \sec \left (d x +c \right )^{\frac {3}{2}} \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right ) \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )+\sqrt {2}\, \sin \left (d x +c \right )\right )}{d a \left (1+\cos \left (d x +c \right )\right )}+\frac {C \left (\sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \sec \left (d x +c \right )^{\frac {3}{2}} \cos \left (d x +c \right )}{d a}\) \(208\)
default \(\frac {\sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (2 A \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+\left (-\sqrt {2}\, \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+\sqrt {2}\right ) \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) C +\left (-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) A \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )+\left (-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) C \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}}{d a \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )}\) \(258\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 

Output:

A/d/a*cos(d*x+c)*2^(1/2)*((1+cos(d*x+c))*a)^(1/2)*sec(d*x+c)^(3/2)*((cos(d 
*x+c)/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c))*arcsin(-csc(d*x+c)+cot(d*x+c))+ 
2^(1/2)*sin(d*x+c))/(1+cos(d*x+c))+C/d/a*(2^(1/2)*arctan((cos(d*x+c)/(1+co 
s(d*x+c)))^(1/2)*tan(d*x+c))+arcsin(-csc(d*x+c)+cot(d*x+c)))*(cos(d*x+c)/( 
1+cos(d*x+c)))^(1/2)*2^(1/2)*((1+cos(d*x+c))*a)^(1/2)*sec(d*x+c)^(3/2)*cos 
(d*x+c)
 

Fricas [A] (verification not implemented)

Time = 0.87 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.89 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {2 \, {\left (C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}} - \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} A \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{a d \cos \left (d x + c\right ) + a d} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, al 
gorithm="fricas")
 

Output:

-(2*(C*cos(d*x + c) + C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos( 
d*x + c))/(sqrt(a)*sin(d*x + c))) - sqrt(2)*((A + C)*a*cos(d*x + c) + (A + 
 C)*a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a) 
*sin(d*x + c)))/sqrt(a) - 2*sqrt(a*cos(d*x + c) + a)*A*sin(d*x + c)/sqrt(c 
os(d*x + c)))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, al 
gorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(3/2)/sqrt(a*cos(d*x + c) + 
a), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, al 
gorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^( 
1/2),x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^( 
1/2), x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )}{\cos \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )+1}d x \right ) a \right )}{a} \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x)**2*s 
ec(c + d*x))/(cos(c + d*x) + 1),x)*c + int((sqrt(sec(c + d*x))*sqrt(cos(c 
+ d*x) + 1)*sec(c + d*x))/(cos(c + d*x) + 1),x)*a))/a