\(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [1259]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 151 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {10 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 C \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 B \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 C \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \] Output:

6/5*B*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1 
/2)/d+10/21*C*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec( 
d*x+c)^(1/2)/d+2/7*C*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/5*B*sin(d*x+c)/d/sec( 
d*x+c)^(3/2)+10/21*C*sin(d*x+c)/d/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.88 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.66 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (252 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+100 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(65 C+42 B \cos (c+d x)+15 C \cos (2 (c+d x))) \sin (2 (c+d x))\right )}{210 d} \] Input:

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Sec[c + d*x]^(3/2),x]
 

Output:

(Sqrt[Sec[c + d*x]]*(252*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 
100*C*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (65*C + 42*B*Cos[c + 
d*x] + 15*C*Cos[2*(c + d*x)])*Sin[2*(c + d*x)]))/(210*d)
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.91, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.433, Rules used = {3042, 4709, 3042, 3489, 3042, 3227, 3042, 3115, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \cos (c+d x)+C \cos (c+d x)^2}{\sec (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \cos ^{\frac {3}{2}}(c+d x) \left (C \cos ^2(c+d x)+B \cos (c+d x)\right )dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (C \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3489

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \cos ^{\frac {5}{2}}(c+d x) (B+C \cos (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (B+C \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \int \cos ^{\frac {5}{2}}(c+d x)dx+C \int \cos ^{\frac {7}{2}}(c+d x)dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx+C \int \sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}dx\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+C \left (\frac {5}{7} \int \cos ^{\frac {3}{2}}(c+d x)dx+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+C \left (\frac {5}{7} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+C \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+C \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (C \left (\frac {5}{7} \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+C \left (\frac {2 \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}+\frac {5}{7} \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )\right )\)

Input:

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Sec[c + d*x]^(3/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(B*((6*EllipticE[(c + d*x)/2, 2])/(5 
*d) + (2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)) + C*((2*Cos[c + d*x]^(5/2 
)*Sin[c + d*x])/(7*d) + (5*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[ 
Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/7))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3489
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + 
(C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b   Int[(b*Sin[e + f* 
x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(402\) vs. \(2(130)=260\).

Time = 23.38 (sec) , antiderivative size = 403, normalized size of antiderivative = 2.67

method result size
default \(-\frac {2 B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(403\)
parts \(-\frac {2 B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(403\)

Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE 
)
 

Output:

-2/5*B*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*sin(1/2 
*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4 
-2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))/(- 
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*c 
os(1/2*d*x+1/2*c)^2-1)^(1/2)/d-2/21*C*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2* 
d*x+1/2*c)^2)^(1/2)*(48*cos(1/2*d*x+1/2*c)^9-120*cos(1/2*d*x+1/2*c)^7+128* 
cos(1/2*d*x+1/2*c)^5-72*cos(1/2*d*x+1/2*c)^3+5*(sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+ 
16*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.03 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-25 i \, \sqrt {2} C {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} C {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} B {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} B {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (15 \, C \cos \left (d x + c\right )^{3} + 21 \, B \cos \left (d x + c\right )^{2} + 25 \, C \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="fri 
cas")
 

Output:

1/105*(-25*I*sqrt(2)*C*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
 + c)) + 25*I*sqrt(2)*C*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c)) + 63*I*sqrt(2)*B*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
 cos(d*x + c) + I*sin(d*x + c))) - 63*I*sqrt(2)*B*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(15*C*cos(d* 
x + c)^3 + 21*B*cos(d*x + c)^2 + 25*C*cos(d*x + c))*sin(d*x + c)/sqrt(cos( 
d*x + c)))/d
 

Sympy [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (B + C \cos {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/sec(d*x+c)**(3/2),x)
 

Output:

Integral((B + C*cos(c + d*x))*cos(c + d*x)/sec(c + d*x)**(3/2), x)
 

Maxima [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="max 
ima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/sec(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x, algorithm="gia 
c")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/sec(d*x + c)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(1/cos(c + d*x))^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(1/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )^{2}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}}d x \right ) c \] Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/sec(d*x+c)^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x))*cos(c + d*x))/sec(c + d*x)**2,x)*b + int((sqrt(sec 
(c + d*x))*cos(c + d*x)**2)/sec(c + d*x)**2,x)*c