\(\int \sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sqrt {\sec (c+d x)} \, dx\) [1315]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 151 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=\frac {\sqrt {a} (8 A+4 B+3 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a (4 B+C) \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}} \] Output:

1/4*a^(1/2)*(8*A+4*B+3*C)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2) 
)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1/4*a*(4*B+C)*sin(d*x+c)/d/(a+a*cos( 
d*x+c))^(1/2)/sec(d*x+c)^(1/2)+1/2*C*(a+a*cos(d*x+c))^(1/2)*sin(d*x+c)/d/s 
ec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.47 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.81 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=\frac {\sqrt {\cos (c+d x)} \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (\sqrt {2} (8 A+4 B+3 C) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} (4 B+3 C+2 C \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \] Input:

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2) 
*Sqrt[Sec[c + d*x]],x]
 

Output:

(Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[Sec[c 
 + d*x]]*(Sqrt[2]*(8*A + 4*B + 3*C)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*S 
qrt[Cos[c + d*x]]*(4*B + 3*C + 2*C*Cos[c + d*x])*Sin[(c + d*x)/2]))/(8*d)
 

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3042, 4709, 3042, 3524, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+a} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+a} \left (A+B \cos (c+d x)+C \cos (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\cos (c+d x) a+a} \left (C \cos ^2(c+d x)+B \cos (c+d x)+A\right )}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (C \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+A\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3524

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+C)+a (4 B+C) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx}{2 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+C)+a (4 B+C) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (4 A+C)+a (4 B+C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 3460

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} a (8 A+4 B+3 C) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a^2 (4 B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{2} a (8 A+4 B+3 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a^2 (4 B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^2 (4 B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {a (8 A+4 B+3 C) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^{3/2} (8 A+4 B+3 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a^2 (4 B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\right )\)

Input:

Int[Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sqrt[ 
Sec[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((C*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Co 
s[c + d*x]]*Sin[c + d*x])/(2*d) + ((a^(3/2)*(8*A + 4*B + 3*C)*ArcSin[(Sqrt 
[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a^2*(4*B + C)*Sqrt[Cos[c 
 + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(4*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3524
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_. 
) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + 
 n + 2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m 
+ n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n} 
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !Lt 
Q[m, -2^(-1)] && NeQ[m + n + 2, 0]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(899\) vs. \(2(127)=254\).

Time = 7.71 (sec) , antiderivative size = 900, normalized size of antiderivative = 5.96

method result size
parts \(\text {Expression too large to display}\) \(900\)
default \(\text {Expression too large to display}\) \(956\)

Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

-2*A/d*(1/(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)*((2*cos(1/2*d*x+1/2*c)^2-1)/(c 
os(1/2*d*x+1/2*c)+1)^2)^(1/2)*(cos(1/2*d*x+1/2*c)^2*a)^(1/2)*arctan(2^(1/2 
)/((2*cos(1/2*d*x+1/2*c)^2-1)/(cos(1/2*d*x+1/2*c)+1)^2)^(1/2)*(-csc(1/2*d* 
x+1/2*c)+cot(1/2*d*x+1/2*c)))*(1+sec(1/2*d*x+1/2*c))+B*2^(1/2)*(1/d*2^(1/2 
)*(1/(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)*((2*cos(1/2*d*x+1/2*c)^2-1)/(cos(1/ 
2*d*x+1/2*c)+1)^2)^(1/2)*(cos(1/2*d*x+1/2*c)^2*a)^(1/2)*arctan(2^(1/2)/((2 
*cos(1/2*d*x+1/2*c)^2-1)/(cos(1/2*d*x+1/2*c)+1)^2)^(1/2)*(-csc(1/2*d*x+1/2 
*c)+cot(1/2*d*x+1/2*c)))*(1+sec(1/2*d*x+1/2*c))-1/2/d*(cos(1/2*d*x+1/2*c)^ 
2*a)^(1/2)*(1/(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)*((-4*cos(1/2*d*x+1/2*c)^2+ 
2)*tan(1/2*d*x+1/2*c)+2^(1/2)*arctan(2^(1/2)/((2*cos(1/2*d*x+1/2*c)^2-1)/( 
cos(1/2*d*x+1/2*c)+1)^2)^(1/2)*(-csc(1/2*d*x+1/2*c)+cot(1/2*d*x+1/2*c)))*( 
(2*cos(1/2*d*x+1/2*c)^2-1)/(cos(1/2*d*x+1/2*c)+1)^2)^(1/2)*(3+3*sec(1/2*d* 
x+1/2*c))))-3/4*C/d*(cos(1/2*d*x+1/2*c)^2*a)^(1/2)*(1/(2*cos(1/2*d*x+1/2*c 
)^2-1))^(1/2)*arctan(2^(1/2)/((2*cos(1/2*d*x+1/2*c)^2-1)/(cos(1/2*d*x+1/2* 
c)+1)^2)^(1/2)*(-csc(1/2*d*x+1/2*c)+cot(1/2*d*x+1/2*c)))*((2*cos(1/2*d*x+1 
/2*c)^2-1)/(cos(1/2*d*x+1/2*c)+1)^2)^(1/2)-3/4*C/d*(cos(1/2*d*x+1/2*c)^2*a 
)^(1/2)*(1/(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)*arctan(2^(1/2)/((2*cos(1/2*d* 
x+1/2*c)^2-1)/(cos(1/2*d*x+1/2*c)+1)^2)^(1/2)*(-csc(1/2*d*x+1/2*c)+cot(1/2 
*d*x+1/2*c)))*((2*cos(1/2*d*x+1/2*c)^2-1)/(cos(1/2*d*x+1/2*c)+1)^2)^(1/2)* 
sec(1/2*d*x+1/2*c)-1/2*C*2^(1/2)/d*(cos(1/2*d*x+1/2*c)^2*a)^(1/2)*(1/(2...
 

Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.88 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=-\frac {{\left ({\left (8 \, A + 4 \, B + 3 \, C\right )} \cos \left (d x + c\right ) + 8 \, A + 4 \, B + 3 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {{\left (2 \, C \cos \left (d x + c\right )^{2} + {\left (4 \, B + 3 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^(1/2),x, algorithm="fricas")
 

Output:

-1/4*(((8*A + 4*B + 3*C)*cos(d*x + c) + 8*A + 4*B + 3*C)*sqrt(a)*arctan(sq 
rt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - (2*C*c 
os(d*x + c)^2 + (4*B + 3*C)*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*x 
 + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)
 

Sympy [F]

\[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=\int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}\, dx \] Input:

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x 
+c)**(1/2),x)
 

Output:

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + B*cos(c + d*x) + C*cos(c + d*x)** 
2)*sqrt(sec(c + d*x)), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1996 vs. \(2 (127) = 254\).

Time = 0.41 (sec) , antiderivative size = 1996, normalized size of antiderivative = 13.22 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^(1/2),x, algorithm="maxima")
 

Output:

1/16*(16*A*sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*co 
s(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2* 
c) + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos( 
2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
 + 1)) + cos(d*x + c)) + 4*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2 
*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 
 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + sqrt(a)*(arctan2(-(cos(2*d*x + 2* 
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin( 
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 
 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2* 
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - arctan2(-(cos(2*d 
*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2* 
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + 
c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c) 
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*s 
in(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - arctan2...
 

Giac [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^(1/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=\int \sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right ) \,d x \] Input:

int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) 
+ C*cos(c + d*x)^2),x)
 

Output:

int((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x) 
+ C*cos(c + d*x)^2), x)
 

Reduce [F]

\[ \int \sqrt {a+a \cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}d x \right ) a \right ) \] Input:

int((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2 
),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x),x)*b + 
 int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x)**2,x)*c + int( 
sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1),x)*a)