\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\) [1343]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 235 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {(8 A-4 B+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 \sqrt {a} d}-\frac {\sqrt {2} (A-B+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {C \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x)}+\frac {(4 B-C) \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \] Output:

1/4*(8*A-4*B+7*C)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))*cos(d* 
x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(1/2)/d-2^(1/2)*(A-B+C)*arctan(1/2*a^(1/2)*s 
in(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2 
)*sec(d*x+c)^(1/2)/a^(1/2)/d+1/2*C*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec 
(d*x+c)^(3/2)+1/4*(4*B-C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^( 
1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 3.24 (sec) , antiderivative size = 211, normalized size of antiderivative = 0.90 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (\frac {\left (-8 (A-B+C) \arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )+\sqrt {2} (8 A-4 B+7 C) \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}\right )\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {1+\sec (c+d x)}}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}+(4 B-C+2 C \cos (c+d x)) \sqrt {\sec (c+d x)} \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right )\right )}{4 d \sqrt {a (1+\cos (c+d x))}} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[a + a*Cos[c + d*x] 
]*Sqrt[Sec[c + d*x]]),x]
 

Output:

(Cos[(c + d*x)/2]*(((-8*(A - B + C)*ArcSin[Tan[(c + d*x)/2]] + Sqrt[2]*(8* 
A - 4*B + 7*C)*ArcTan[Tan[(c + d*x)/2]/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x] 
)]])*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[1 + Sec[c 
 + d*x]])/Sqrt[Sec[(c + d*x)/2]^2] + (4*B - C + 2*C*Cos[c + d*x])*Sqrt[Sec 
[c + d*x]]*(-Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(4*d*Sqrt[a*(1 + C 
os[c + d*x])])
 

Rubi [A] (verified)

Time = 1.44 (sec) , antiderivative size = 228, normalized size of antiderivative = 0.97, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 4709, 3042, 3524, 27, 3042, 3462, 27, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos (c+d x)^2}{\sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+a}}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\cos (c+d x)} \left (C \cos ^2(c+d x)+B \cos (c+d x)+A\right )}{\sqrt {\cos (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (C \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+A\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 3524

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\cos (c+d x)} (a (4 A+3 C)+a (4 B-C) \cos (c+d x))}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\cos (c+d x)} (a (4 A+3 C)+a (4 B-C) \cos (c+d x))}{\sqrt {\cos (c+d x) a+a}}dx}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a (4 A+3 C)+a (4 B-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3462

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {(4 B-C) a^2+(8 A-4 B+7 C) \cos (c+d x) a^2}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {(4 B-C) a^2+(8 A-4 B+7 C) \cos (c+d x) a^2}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {(4 B-C) a^2+(8 A-4 B+7 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3461

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a (8 A-4 B+7 C) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx-8 a^2 (A-B+C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a (8 A-4 B+7 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-8 a^2 (A-B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {-8 a^2 (A-B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {2 a (8 A-4 B+7 C) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {2 a^{3/2} (8 A-4 B+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-8 a^2 (A-B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3261

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {16 a^3 (A-B+C) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {2 a^{3/2} (8 A-4 B+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {2 a^{3/2} (8 A-4 B+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {8 \sqrt {2} a^{3/2} (A-B+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}+\frac {a (4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a}+\frac {C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}\right )\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[a + a*Cos[c + d*x]]*Sqrt 
[Sec[c + d*x]]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((C*Cos[c + d*x]^(3/2)*Sin[c + d*x]) 
/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (((2*a^(3/2)*(8*A - 4*B + 7*C)*ArcSin[(S 
qrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (8*Sqrt[2]*a^(3/2)*(A 
- B + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a 
+ a*Cos[c + d*x]])])/d)/(2*a) + (a*(4*B - C)*Sqrt[Cos[c + d*x]]*Sin[c + d* 
x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(4*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3462
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Sin[e + f*x])^m*(c + d*S 
in[e + f*x])^(n - 1)*Simp[A*b*c*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m 
 + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && GtQ[n, 0] && (IntegerQ[n] || EqQ[m + 1/2, 0])
 

rule 3524
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_. 
) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + 
 n + 2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m 
+ n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n} 
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !Lt 
Q[m, -2^(-1)] && NeQ[m + n + 2, 0]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 5.30 (sec) , antiderivative size = 291, normalized size of antiderivative = 1.24

method result size
default \(\frac {\left (8 A \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )-4 B \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+7 C \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+4 B \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\sin \left (2 d x +2 c \right )-\sin \left (d x +c \right )\right ) C +8 A \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )-8 B \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )+8 C \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}}{8 d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(291\)
parts \(\frac {A \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \left (\sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right )}{d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}+\frac {B \sqrt {2}\, \left (\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )-2 \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}}{2 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a \sqrt {\sec \left (d x +c \right )}}+\frac {C \left (7 \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\sin \left (d x +c \right ) \left (2 \cos \left (d x +c \right )-1\right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+8 \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}}{8 d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(402\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

1/8/d/a*(8*A*2^(1/2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))- 
4*B*2^(1/2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))+7*C*2^(1/ 
2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))+4*B*2^(1/2)*(cos(d 
*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c))) 
^(1/2)*(sin(2*d*x+2*c)-sin(d*x+c))*C+8*A*arcsin(-csc(d*x+c)+cot(d*x+c))-8* 
B*arcsin(-csc(d*x+c)+cot(d*x+c))+8*C*arcsin(-csc(d*x+c)+cot(d*x+c)))*2^(1/ 
2)*((1+cos(d*x+c))*a)^(1/2)/(1+cos(d*x+c))/sec(d*x+c)^(1/2)/(cos(d*x+c)/(1 
+cos(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 14.70 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.86 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=-\frac {{\left ({\left (8 \, A - 4 \, B + 7 \, C\right )} \cos \left (d x + c\right ) + 8 \, A - 4 \, B + 7 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {4 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}} - \frac {{\left (2 \, C \cos \left (d x + c\right )^{2} + {\left (4 \, B - C\right )} \cos \left (d x + c\right )\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c 
)^(1/2),x, algorithm="fricas")
 

Output:

-1/4*(((8*A - 4*B + 7*C)*cos(d*x + c) + 8*A - 4*B + 7*C)*sqrt(a)*arctan(sq 
rt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 4*sqrt 
(2)*((A - B + C)*a*cos(d*x + c) + (A - B + C)*a)*arctan(sqrt(2)*sqrt(a*cos 
(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/sqrt(a) - (2*C*c 
os(d*x + c)^2 + (4*B - C)*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*x + 
 c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \sqrt {\sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(1/2)/sec(d*x 
+c)**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)/(sqrt(a*(cos(c + d*x) + 
1))*sqrt(sec(c + d*x))), x)
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c 
)^(1/2),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(sqrt(a*cos(d*x + c) + a 
)*sqrt(sec(d*x + c))), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c 
)^(1/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a 
*cos(c + d*x))^(1/2)),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a 
*cos(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\sec \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\sec \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\sec \left (d x +c \right )}d x \right ) a \right )}{a} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2 
),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x))/(co 
s(c + d*x)*sec(c + d*x) + sec(c + d*x)),x)*b + int((sqrt(sec(c + d*x))*sqr 
t(cos(c + d*x) + 1)*cos(c + d*x)**2)/(cos(c + d*x)*sec(c + d*x) + sec(c + 
d*x)),x)*c + int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1))/(cos(c + d*x) 
*sec(c + d*x) + sec(c + d*x)),x)*a))/a