\(\int \frac {(a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx\) [1345]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 54, antiderivative size = 192 \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {(2 A b+2 a B-b B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {\sqrt {2} (a-b) (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {b B \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \] Output:

(2*A*b+2*B*a-B*b)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))*cos(d* 
x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(1/2)/d+2^(1/2)*(a-b)*(A-B)*arctan(1/2*a^(1/ 
2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^ 
(1/2)*sec(d*x+c)^(1/2)/a^(1/2)/d+b*B*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/s 
ec(d*x+c)^(1/2)
 

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.74 \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\sqrt {2} (2 A b+2 a B-b B) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 (a-b) (A-B) \arctan \left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )+2 b B \sqrt {\cos (c+d x)} \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {a (1+\cos (c+d x))}} \] Input:

Integrate[((a*A + (A*b + a*B)*Cos[c + d*x] + b*B*Cos[c + d*x]^2)*Sqrt[Sec[ 
c + d*x]])/Sqrt[a + a*Cos[c + d*x]],x]
 

Output:

(Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(Sqrt[2]*(2*A*b + 
2*a*B - b*B)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*(a - b)*(A - B)*ArcTan[S 
in[(c + d*x)/2]/Sqrt[Cos[c + d*x]]] + 2*b*B*Sqrt[Cos[c + d*x]]*Sin[(c + d* 
x)/2]))/(d*Sqrt[a*(1 + Cos[c + d*x])])
 

Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 183, normalized size of antiderivative = 0.95, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3042, 4709, 3042, 3524, 27, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left ((a B+A b) \cos (c+d x)+a A+b B \cos ^2(c+d x)\right )}{\sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left ((a B+A b) \cos (c+d x)+a A+b B \cos (c+d x)^2\right )}{\sqrt {a \cos (c+d x)+a}}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {b B \cos ^2(c+d x)+(A b+a B) \cos (c+d x)+a A}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {b B \sin \left (c+d x+\frac {\pi }{2}\right )^2+(A b+a B) \sin \left (c+d x+\frac {\pi }{2}\right )+a A}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 3524

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (2 a A+b B)+a (2 A b-B b+2 a B) \cos (c+d x)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (2 a A+b B)+a (2 A b-B b+2 a B) \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (2 a A+b B)+a (2 A b-B b+2 a B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3461

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (a-b) (A-B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx+(2 a B+2 A b-b B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (a-b) (A-B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+(2 a B+2 A b-b B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (a-b) (A-B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {2 (2 a B+2 A b-b B) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a (a-b) (A-B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {2 \sqrt {a} (2 a B+2 A b-b B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3261

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 \sqrt {a} (2 a B+2 A b-b B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {4 a^2 (a-b) (A-B) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 \sqrt {a} (2 a B+2 A b-b B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 \sqrt {2} \sqrt {a} (a-b) (A-B) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}+\frac {b B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )\)

Input:

Int[((a*A + (A*b + a*B)*Cos[c + d*x] + b*B*Cos[c + d*x]^2)*Sqrt[Sec[c + d* 
x]])/Sqrt[a + a*Cos[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(((2*Sqrt[a]*(2*A*b + 2*a*B - b*B)*A 
rcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2*Sqrt[2]*Sqr 
t[a]*(a - b)*(A - B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d 
*x]]*Sqrt[a + a*Cos[c + d*x]])])/d)/(2*a) + (b*B*Sqrt[Cos[c + d*x]]*Sin[c 
+ d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3524
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_. 
) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x] 
)^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + 
 n + 2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m 
+ n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + 
n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n} 
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !Lt 
Q[m, -2^(-1)] && NeQ[m + n + 2, 0]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [A] (verified)

Time = 4.10 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.46

method result size
default \(\frac {\left (B \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, b \sin \left (d x +c \right )+2 A \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) b +2 B \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) a -B \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) b -2 A \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) a +2 A \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) b +2 B \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) a -2 B \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) b \right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \cos \left (d x +c \right )}{2 d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(281\)
parts \(-\frac {A \sqrt {\sec \left (d x +c \right )}\, \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \cos \left (d x +c \right )}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}+\frac {\left (A b +B a \right ) \left (\sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}-\frac {B b \left (-\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+2 \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{2 d a \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(350\)

Input:

int((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos( 
d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/d/a*(B*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b*sin(d*x+c)+2*A*2^(1 
/2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))*b+2*B*2^(1/2)*arc 
tan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))*a-B*2^(1/2)*arctan((cos( 
d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))*b-2*A*arcsin(-csc(d*x+c)+cot(d*x+ 
c))*a+2*A*arcsin(-csc(d*x+c)+cot(d*x+c))*b+2*B*arcsin(-csc(d*x+c)+cot(d*x+ 
c))*a-2*B*arcsin(-csc(d*x+c)+cot(d*x+c))*b)*sec(d*x+c)^(1/2)*2^(1/2)*((1+c 
os(d*x+c))*a)^(1/2)*cos(d*x+c)/(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)
 

Fricas [A] (verification not implemented)

Time = 13.09 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.08 \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {a \cos \left (d x + c\right ) + a} B b \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (2 \, B a + {\left (2 \, A - B\right )} b + {\left (2 \, B a + {\left (2 \, A - B\right )} b\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {\sqrt {2} {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b + {\left ({\left (A - B\right )} a^{2} - {\left (A - B\right )} a b\right )} \cos \left (d x + c\right )\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d} \] Input:

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+ 
a*cos(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

(sqrt(a*cos(d*x + c) + a)*B*b*sqrt(cos(d*x + c))*sin(d*x + c) - (2*B*a + ( 
2*A - B)*b + (2*B*a + (2*A - B)*b)*cos(d*x + c))*sqrt(a)*arctan(sqrt(a*cos 
(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - sqrt(2)*((A - 
B)*a^2 - (A - B)*a*b + ((A - B)*a^2 - (A - B)*a*b)*cos(d*x + c))*arctan(sq 
rt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/ 
sqrt(a))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F]

\[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \left (a + b \cos {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/( 
a+a*cos(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x))*(a + b*cos(c + d*x))*sqrt(sec(c + d*x))/sqrt 
(a*(cos(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {{\left (B b \cos \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sqrt {\sec \left (d x + c\right )}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+ 
a*cos(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate((B*b*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))*sqrt(sec(d 
*x + c))/sqrt(a*cos(d*x + c) + a), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+ 
a*cos(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (B\,b\,{\cos \left (c+d\,x\right )}^2+\left (A\,b+B\,a\right )\,\cos \left (c+d\,x\right )+A\,a\right )}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int(((1/cos(c + d*x))^(1/2)*(A*a + cos(c + d*x)*(A*b + B*a) + B*b*cos(c + 
d*x)^2))/(a + a*cos(c + d*x))^(1/2),x)
 

Output:

int(((1/cos(c + d*x))^(1/2)*(A*a + cos(c + d*x)*(A*b + B*a) + B*b*cos(c + 
d*x)^2))/(a + a*cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (2 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}d x \right ) a b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )+1}d x \right ) b^{2}+\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )+1}}{\cos \left (d x +c \right )+1}d x \right ) a^{2}\right )}{a} \] Input:

int((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos( 
d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(2*int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)*cos(c + d*x))/( 
cos(c + d*x) + 1),x)*a*b + int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x) + 1)* 
cos(c + d*x)**2)/(cos(c + d*x) + 1),x)*b**2 + int((sqrt(sec(c + d*x))*sqrt 
(cos(c + d*x) + 1))/(cos(c + d*x) + 1),x)*a**2))/a