\(\int (a+b \cos (c+d x)) (A+C \cos ^2(c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx\) [1361]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 172 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {2 a (3 A+5 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a (3 A+5 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 A b \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \] Output:

-2/5*a*(3*A+5*C)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*se 
c(d*x+c)^(1/2)/d+2/3*b*(A+3*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/ 
2*c,2^(1/2))*sec(d*x+c)^(1/2)/d+2/5*a*(3*A+5*C)*sec(d*x+c)^(1/2)*sin(d*x+c 
)/d+2/3*A*b*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*a*A*sec(d*x+c)^(5/2)*sin(d*x 
+c)/d
 

Mathematica [A] (verified)

Time = 3.11 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.71 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {\sec ^{\frac {5}{2}}(c+d x) \left (-12 a (3 A+5 C) \cos ^{\frac {5}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 b (A+3 C) \cos ^{\frac {5}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 (10 A b \cos (c+d x)+3 a (5 (A+C)+(3 A+5 C) \cos (2 (c+d x)))) \sin (c+d x)\right )}{30 d} \] Input:

Integrate[(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x 
]
 

Output:

(Sec[c + d*x]^(5/2)*(-12*a*(3*A + 5*C)*Cos[c + d*x]^(5/2)*EllipticE[(c + d 
*x)/2, 2] + 20*b*(A + 3*C)*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2] + 
2*(10*A*b*Cos[c + d*x] + 3*a*(5*(A + C) + (3*A + 5*C)*Cos[2*(c + d*x)]))*S 
in[c + d*x]))/(30*d)
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.88, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 4709, 3042, 3511, 27, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {7}{2}}(c+d x) (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sec (c+d x)^{7/2} (a+b \cos (c+d x)) \left (A+C \cos (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(a+b \cos (c+d x)) \left (C \cos ^2(c+d x)+A\right )}{\cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3511

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2}{5} \int \frac {5 b C \cos ^2(c+d x)+a (3 A+5 C) \cos (c+d x)+5 A b}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \int \frac {5 b C \cos ^2(c+d x)+a (3 A+5 C) \cos (c+d x)+5 A b}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \int \frac {5 b C \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (3 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )+5 A b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3500

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {2}{3} \int \frac {3 a (3 A+5 C)+5 b (A+3 C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \int \frac {3 a (3 A+5 C)+5 b (A+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \int \frac {3 a (3 A+5 C)+5 b (A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \left (3 a (3 A+5 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+5 b (A+3 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \left (3 a (3 A+5 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+5 b (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \left (3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )+5 b (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \left (3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+5 b (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \left (5 b (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {1}{3} \left (3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {10 b (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\right )+\frac {10 A b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

Input:

Int[(a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*A*Sin[c + d*x])/(5*d*Cos[c + d 
*x]^(5/2)) + ((10*A*b*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ((10*b*(A + 
 3*C)*EllipticF[(c + d*x)/2, 2])/d + 3*a*(3*A + 5*C)*((-2*EllipticE[(c + d 
*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/3)/5)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3511
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/( 
b^2*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a 
 + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d 
)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] + b 
*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e 
, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(704\) vs. \(2(151)=302\).

Time = 395.03 (sec) , antiderivative size = 705, normalized size of antiderivative = 4.10

method result size
default \(\text {Expression too large to display}\) \(705\)
parts \(\text {Expression too large to display}\) \(892\)

Input:

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*b*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2* 
A*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2 
)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2* 
cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*C*a/sin(1/2*d*x+1/2*c)^2 
/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2) 
^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2 
))+2/5*a*A/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1 
/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c 
)-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2 
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)* 
sin(1/2*d*x+1/2*c)^4+12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x 
+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*s 
in(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli 
pticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))*(-2*si 
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos( 
1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.28 \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {-5 i \, \sqrt {2} {\left (A + 3 \, C\right )} b \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (A + 3 \, C\right )} b \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{2} + 5 \, A b \cos \left (d x + c\right ) + 3 \, A a\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorith 
m="fricas")
 

Output:

1/15*(-5*I*sqrt(2)*(A + 3*C)*b*cos(d*x + c)^2*weierstrassPInverse(-4, 0, c 
os(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*(A + 3*C)*b*cos(d*x + c)^2*wei 
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(3*A 
+ 5*C)*a*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*(3*A + 5*C)*a*cos(d*x + c)^2 
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c))) + 2*(3*(3*A + 5*C)*a*cos(d*x + c)^2 + 5*A*b*cos(d*x + c) + 3*A*a) 
*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)*sec(d*x+c)**(7/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)*sec(d*x + c)^(7/2), 
x)
 

Giac [F]

\[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)*sec(d*x + c)^(7/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int \left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right ) \,d x \] Input:

int((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(7/2)*(a + b*cos(c + d*x)),x)
 

Output:

int((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(7/2)*(a + b*cos(c + d*x)), x)
 

Reduce [F]

\[ \int (a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) a b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{3}d x \right ) b c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) a c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) a^{2} \] Input:

int((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x)
 

Output:

int(sqrt(sec(c + d*x))*cos(c + d*x)*sec(c + d*x)**3,x)*a*b + int(sqrt(sec( 
c + d*x))*cos(c + d*x)**3*sec(c + d*x)**3,x)*b*c + int(sqrt(sec(c + d*x))* 
cos(c + d*x)**2*sec(c + d*x)**3,x)*a*c + int(sqrt(sec(c + d*x))*sec(c + d* 
x)**3,x)*a**2