\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx\) [1393]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 172 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=-\frac {2 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {2 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b d}-\frac {2 \left (A b^2+a^2 C\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a b (a+b) d}+\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{a d} \] Output:

-2*A*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1/ 
2)/a/d+2*C*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x 
+c)^(1/2)/b/d-2*(A*b^2+C*a^2)*cos(d*x+c)^(1/2)*EllipticPi(sin(1/2*d*x+1/2* 
c),2*b/(a+b),2^(1/2))*sec(d*x+c)^(1/2)/a/b/(a+b)/d+2*A*sec(d*x+c)^(1/2)*si 
n(d*x+c)/a/d
 

Mathematica [A] (warning: unable to verify)

Time = 3.26 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.73 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=-\frac {2 \cos (2 (c+d x)) \csc (c+d x) \left (a A b E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right )-A b (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )+\left (A b^2+a^2 C\right ) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right )\right ) \sec (c+d x) \sqrt {-\tan ^2(c+d x)}}{a^2 b d \left (-2+\sec ^2(c+d x)\right )} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/(a + b*Cos[c + d*x]) 
,x]
 

Output:

(-2*Cos[2*(c + d*x)]*Csc[c + d*x]*(a*A*b*EllipticE[ArcSin[Sqrt[Sec[c + d*x 
]]], -1] - A*b*(a + b)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1] + (A*b^2 
+ a^2*C)*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1])*Sec[c + d*x]* 
Sqrt[-Tan[c + d*x]^2])/(a^2*b*d*(-2 + Sec[c + d*x]^2))
 

Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.77, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4709, 3042, 3535, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (c+d x)^{3/2} \left (A+C \cos (c+d x)^2\right )}{a+b \cos (c+d x)}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3535

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int -\frac {A b \cos ^2(c+d x)+a (A-C) \cos (c+d x)+A b}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A b \cos ^2(c+d x)+a (A-C) \cos (c+d x)+A b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {A b \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )+A b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}\right )\)

\(\Big \downarrow \) 3538

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {A \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {A b^2-a b C \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {A b^2-a b C \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}+A \int \sqrt {\cos (c+d x)}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {A b^2-a b C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+A \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {A b^2-a b C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 3481

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx-a C \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-a C \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx-\frac {2 a C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\frac {2 \left (a^2 C+A b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}-\frac {2 a C \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/(a + b*Cos[c + d*x]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-(((2*A*EllipticE[(c + d*x)/2, 2])/ 
d + ((-2*a*C*EllipticF[(c + d*x)/2, 2])/d + (2*(A*b^2 + a^2*C)*EllipticPi[ 
(2*b)/(a + b), (c + d*x)/2, 2])/((a + b)*d))/b)/a) + (2*A*Sin[c + d*x])/(a 
*d*Sqrt[Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3535
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*S 
in[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m 
+ 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin 
[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n 
+ 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d 
*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) || 
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 
 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(377\) vs. \(2(163)=326\).

Time = 2.90 (sec) , antiderivative size = 378, normalized size of antiderivative = 2.20

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{b \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 A \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+\frac {4 \left (A \,b^{2}+a^{2} C \right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(378\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x,method=_RETURNV 
ERBOSE)
                                                                                    
                                                                                    
 

Output:

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2/ 
a*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)- 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2))+4*(A*b^2+C*a^2)/a/(-2*a*b+2*b^2)*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+ 
sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/ 
2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorith 
m="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(3/2)/(a+b*cos(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{b \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(3/2)/(b*cos(d*x + c) + a), 
x)
 

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{b \cos \left (d x + c\right ) + a} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(3/2)/(b*cos(d*x + c) + a), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{a+b\,\cos \left (c+d\,x\right )} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + b*cos(c + d*x)),x 
)
 

Output:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + b*cos(c + d*x)), 
x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{a+b \cos (c+d x)} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )}{\cos \left (d x +c \right ) b +a}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right ) b +a}d x \right ) a \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+b*cos(d*x+c)),x)
 

Output:

int((sqrt(sec(c + d*x))*cos(c + d*x)**2*sec(c + d*x))/(cos(c + d*x)*b + a) 
,x)*c + int((sqrt(sec(c + d*x))*sec(c + d*x))/(cos(c + d*x)*b + a),x)*a