\(\int \frac {(A+C \cos ^2(c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\) [115]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 125 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {2 A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-3 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}} \] Output:

2*A*arctanh(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d-1/4*(5*A- 
3*C)*arctanh(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2 
)/a^(3/2)/d-1/2*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.03 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {(5 A-3 C) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right )-4 \sqrt {2} A \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right )+(A+C) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{d (a (1+\cos (c+d x)))^{3/2} \left (-1+\sin ^2\left (\frac {1}{2} (c+d x)\right )\right )} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + a*Cos[c + d*x])^(3/2) 
,x]
 

Output:

((5*A - 3*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5 - 4*Sqrt[2]*A*Ar 
cTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5 + (A + C)*Cos[(c + d*x) 
/2]^3*Sin[(c + d*x)/2])/(d*(a*(1 + Cos[c + d*x]))^(3/2)*(-1 + Sin[(c + d*x 
)/2]^2))
 

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 3521, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {(4 a A-a (A-3 C) \cos (c+d x)) \sec (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(4 a A-a (A-3 C) \cos (c+d x)) \sec (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {4 a A-a (A-3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {4 A \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-a (5 A-3 C) \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (5 A-3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\frac {2 a (5 A-3 C) \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}+4 A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {4 A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {\sqrt {2} \sqrt {a} (5 A-3 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {-\frac {8 a A \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (5 A-3 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {8 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (5 A-3 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + a*Cos[c + d*x])^(3/2),x]
 

Output:

((8*Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d 
- (Sqrt[2]*Sqrt[a]*(5*A - 3*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqr 
t[a + a*Cos[c + d*x]])])/d)/(4*a^2) - ((A + C)*Sin[c + d*x])/(2*d*(a + a*C 
os[c + d*x])^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(372\) vs. \(2(104)=208\).

Time = 0.39 (sec) , antiderivative size = 373, normalized size of antiderivative = 2.98

method result size
default \(-\frac {\sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \left (5 A \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -3 C \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -4 A \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -4 A \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +A \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \sqrt {a}+C \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \sqrt {a}\right )}{4 a^{\frac {5}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(373\)
parts \(-\frac {A \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \left (5 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -4 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -4 \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +\sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\right )}{4 a^{\frac {5}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}+\frac {C \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \left (3 \ln \left (\frac {2 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\right ) \sqrt {2}}{4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(426\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-1/4/a^(5/2)/cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(5*A*2^(1/2 
)*ln(2*(2*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))* 
cos(1/2*d*x+1/2*c)^2*a-3*C*2^(1/2)*ln(2*(2*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a 
)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^2*a-4*A*ln(-4/(2*cos(1 
/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin( 
1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*cos(1/2*d*x+1/2*c)^2*a-4*A*ln(4/(2*cos(1/2 
*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/ 
2*d*x+1/2*c)^2*a)^(1/2)+2*a))*cos(1/2*d*x+1/2*c)^2*a+A*2^(1/2)*(sin(1/2*d* 
x+1/2*c)^2*a)^(1/2)*a^(1/2)+C*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/ 
2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 279 vs. \(2 (104) = 208\).

Time = 0.10 (sec) , antiderivative size = 279, normalized size of antiderivative = 2.23 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left ({\left (5 \, A - 3 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - 3 \, C\right )} \cos \left (d x + c\right ) + 5 \, A - 3 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (A + C\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x, algorith 
m="fricas")
 

Output:

-1/8*(sqrt(2)*((5*A - 3*C)*cos(d*x + c)^2 + 2*(5*A - 3*C)*cos(d*x + c) + 5 
*A - 3*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + 
 a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos 
(d*x + c) + 1)) - 4*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(a)*log( 
(a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a 
)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2) 
) + 4*sqrt(a*cos(d*x + c) + a)*(A + C)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 
 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)/(a+a*cos(d*x+c))**(3/2),x)
 

Output:

Integral((A + C*cos(c + d*x)**2)*sec(c + d*x)/(a*(cos(c + d*x) + 1))**(3/2 
), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 46533 vs. \(2 (104) = 208\).

Time = 2.63 (sec) , antiderivative size = 46533, normalized size of antiderivative = 372.26 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x, algorith 
m="maxima")
 

Output:

1/16*(3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*s 
in(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d* 
x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sqrt(2)*sin(5/2*d*x + 5/2*c 
))*cos(3*d*x + 3*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d 
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/ 
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 
 2*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 
+ 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1 
/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + (3*(sqrt 
(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 
1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 
- 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c)^2 + 27*(sqrt(2)*log(cos(1/ 
2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 
sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d* 
x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x + 1/2*c) 
^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(co 
s(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1 
))*cos(d*x + c)^2 + 3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 
1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^ 
2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3...
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x, algorith 
m="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\cos \left (c+d\,x\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(3/2)),x)
 

Output:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) a \right )}{a^{2}} \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*cos(c + d*x)**2*sec(c + d*x))/(cos(c 
 + d*x)**2 + 2*cos(c + d*x) + 1),x)*c + int((sqrt(cos(c + d*x) + 1)*sec(c 
+ d*x))/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1),x)*a))/a**2