\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx\) [1436]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 323 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {4 A (a-b) b \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b} (2 A b+a (A+3 C)) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d} \] Output:

-4/3*A*(a-b)*b*(a+b)^(1/2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos( 
d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec 
(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d/sec(d*x+c)^(1/2 
)+2/3*(a+b)^(1/2)*(2*A*b+a*(A+3*C))*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF( 
(a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))* 
(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d/sec(d* 
x+c)^(1/2)+2/3*A*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d
 

Mathematica [A] (warning: unable to verify)

Time = 9.77 (sec) , antiderivative size = 303, normalized size of antiderivative = 0.94 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {2 \left (\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 A b (a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {b+a \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}+a (-2 A b+a (A+3 C)) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {b+a \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}+A b \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}+A (a+b \cos (c+d x)) \sqrt {\sec (c+d x)} (-2 b \sin (c+d x)+a \tan (c+d x))\right )}{3 a^2 d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/Sqrt[a + b*Cos[c + d 
*x]],x]
 

Output:

(2*((2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(2*A*b*(a + b)*EllipticE[ArcS 
in[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt 
[(b + a*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] + a*(-2*A*b + a*(A + 3 
*C))*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[(1 + Sec[c 
 + d*x])^(-1)]*Sqrt[(b + a*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] + A 
*b*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])) 
/Sqrt[Sec[(c + d*x)/2]^2] + A*(a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]*(-2* 
b*Sin[c + d*x] + a*Tan[c + d*x])))/(3*a^2*d*Sqrt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 1.24 (sec) , antiderivative size = 308, normalized size of antiderivative = 0.95, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.270, Rules used = {3042, 4709, 3042, 3535, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (c+d x)^{5/2} \left (A+C \cos (c+d x)^2\right )}{\sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3535

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int -\frac {2 A b-a (A+3 C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {2 A b-a (A+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {2 A b-a (A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 A b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a (A+3 C)+2 A b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 A b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a (A+3 C)+2 A b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 A b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (a (A+3 C)+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {4 A b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} (a (A+3 C)+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/Sqrt[a + b*Cos[c + d*x]],x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/3*((4*A*(a - b)*b*Sqrt[a + b]*Co 
t[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos 
[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqr 
t[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) - (2*Sqrt[a + b]*(2*A*b + a*(A 
+ 3*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b 
]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a 
 + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/a + (2*A*Sqrt[a + b*Co 
s[c + d*x]]*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3535
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*S 
in[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m 
+ 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin 
[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*(m + n 
+ 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d 
*(A*b^2 + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) || 
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 
 0])))
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(681\) vs. \(2(283)=566\).

Time = 28.52 (sec) , antiderivative size = 682, normalized size of antiderivative = 2.11

method result size
default \(-\frac {2 \left (A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (2 \cos \left (d x +c \right )^{3}+4 \cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )\right )+A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b^{2} \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (2 \cos \left (d x +c \right )^{3}+4 \cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )\right )+A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (\cos \left (d x +c \right )^{3}+2 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )\right )+A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (-2 \cos \left (d x +c \right )^{3}-4 \cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )\right )+C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (3 \cos \left (d x +c \right )^{3}+6 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )\right )+\left (-\cos \left (d x +c \right )-1\right ) \sin \left (d x +c \right ) A \,a^{2}+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (1-\cos \left (d x +c \right )\right ) a A b +2 A \,b^{2} \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )\right ) \sqrt {a +b \cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{\frac {5}{2}}}{3 d \,a^{2} \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+a \right )}\) \(682\)
parts \(-\frac {2 A \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (2 \cos \left (d x +c \right )^{3}+4 \cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b^{2} \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (2 \cos \left (d x +c \right )^{3}+4 \cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (\cos \left (d x +c \right )^{3}+2 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \left (-2 \cos \left (d x +c \right )^{3}-4 \cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )\right )+\left (-\cos \left (d x +c \right )-1\right ) \sin \left (d x +c \right ) a^{2}+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (1-\cos \left (d x +c \right )\right ) a b +2 b^{2} \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )\right ) \sqrt {a +b \cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{\frac {5}{2}}}{3 d \,a^{2} \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+a \right )}-\frac {2 C \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sec \left (d x +c \right )^{\frac {5}{2}} \left (\cos \left (d x +c \right )^{3}+\cos \left (d x +c \right )^{2}\right )}{d \sqrt {a +b \cos \left (d x +c \right )}}\) \(686\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 

Output:

-2/3/d/a^2*(A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/ 
(1+cos(d*x+c)))^(1/2)*a*b*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^ 
(1/2))*(2*cos(d*x+c)^3+4*cos(d*x+c)^2+2*cos(d*x+c))+A*(cos(d*x+c)/(1+cos(d 
*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*Elliptic 
E(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*(2*cos(d*x+c)^3+4*cos(d*x+c 
)^2+2*cos(d*x+c))+A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d* 
x+c))/(1+cos(d*x+c)))^(1/2)*a^2*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/( 
a+b))^(1/2))*(cos(d*x+c)^3+2*cos(d*x+c)^2+cos(d*x+c))+A*(cos(d*x+c)/(1+cos 
(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b*Ellipt 
icF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*(-2*cos(d*x+c)^3-4*cos(d* 
x+c)^2-2*cos(d*x+c))+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos 
(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b 
)/(a+b))^(1/2))*(3*cos(d*x+c)^3+6*cos(d*x+c)^2+3*cos(d*x+c))+(-cos(d*x+c)- 
1)*sin(d*x+c)*A*a^2+sin(d*x+c)*cos(d*x+c)*(1-cos(d*x+c))*a*A*b+2*A*b^2*cos 
(d*x+c)^2*sin(d*x+c))*(a+b*cos(d*x+c))^(1/2)*cos(d*x+c)*sec(d*x+c)^(5/2)/( 
b*cos(d*x+c)^2+a*cos(d*x+c)+b*cos(d*x+c)+a)
 

Fricas [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, al 
gorithm="fricas")
 

Output:

integral((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/sqrt(b*cos(d*x + c) + a 
), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(5/2)/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, al 
gorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/sqrt(b*cos(d*x + c) + 
a), x)
 

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, al 
gorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/sqrt(b*cos(d*x + c) + 
a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + b*cos(c + d*x))^( 
1/2),x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + b*cos(c + d*x))^( 
1/2), x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}}{\cos \left (d x +c \right ) b +a}d x \right ) a \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**2*sec(c + d 
*x)**2)/(cos(c + d*x)*b + a),x)*c + int((sqrt(sec(c + d*x))*sqrt(cos(c + d 
*x)*b + a)*sec(c + d*x)**2)/(cos(c + d*x)*b + a),x)*a