\(\int \frac {(A+C \cos ^2(c+d x)) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx\) [1443]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 481 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 \left (A b^2+a^2 C\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 b \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 (A b-a C) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d \sqrt {\sec (c+d x)}}-\frac {2 \sqrt {a+b} C \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2+a^2 C\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \] Output:

2*(A*b^2+C*a^2)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/ 
2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a 
+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/b/(a+b)^(1/2)/d/sec(d*x+c)^( 
1/2)+2*(A*b-C*a)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1 
/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/( 
a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/(a+b)^(1/2)/d/sec(d*x+c)^(1 
/2)-2*(a+b)^(1/2)*C*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c) 
)^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-s 
ec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1 
/2)-2*(A*b^2+C*a^2)*sec(d*x+c)^(1/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x 
+c))^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1019\) vs. \(2(481)=962\).

Time = 16.10 (sec) , antiderivative size = 1019, normalized size of antiderivative = 2.12 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x]) 
^(3/2),x]
 

Output:

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(A*b^2 + a^2*C)*Sin[c + d 
*x])/(a*b*(a^2 - b^2)) + (2*(A*b^2*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(b* 
(-a^2 + b^2)*(a + b*Cos[c + d*x]))))/d - (2*Sqrt[(1 - Tan[(c + d*x)/2]^2)^ 
(-1)]*(a*A*b^2*Tan[(c + d*x)/2] + A*b^3*Tan[(c + d*x)/2] + a^3*C*Tan[(c + 
d*x)/2] + a^2*b*C*Tan[(c + d*x)/2] - 2*A*b^3*Tan[(c + d*x)/2]^3 - 2*a^2*b* 
C*Tan[(c + d*x)/2]^3 - a*A*b^2*Tan[(c + d*x)/2]^5 + A*b^3*Tan[(c + d*x)/2] 
^5 - a^3*C*Tan[(c + d*x)/2]^5 + a^2*b*C*Tan[(c + d*x)/2]^5 - 2*a^3*C*Ellip 
ticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d* 
x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b 
)] + 2*a*b^2*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]* 
Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c 
 + d*x)/2]^2)/(a + b)] - 2*a^3*C*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], 
(-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a 
+ b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*a*b^2*C*El 
lipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^ 
2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[ 
(c + d*x)/2]^2)/(a + b)] + (a + b)*(A*b^2 + a^2*C)*EllipticE[ArcSin[Tan[(c 
 + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + 
d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + 
 b)] - a*b*(a + b)*(A + C)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)...
 

Rubi [A] (verified)

Time = 1.91 (sec) , antiderivative size = 461, normalized size of antiderivative = 0.96, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {3042, 4709, 3042, 3531, 3042, 3288, 3472, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+C \cos (c+d x)^2\right )}{(a+b \cos (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3531

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {A b-a C \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}dx}{b}+\frac {C \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{b}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {A b-a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}+\frac {C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {A b-a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3472

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {C a^2+b (A+C) \cos (c+d x) a+A b^2}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {C a^2+b (A+C) \sin \left (c+d x+\frac {\pi }{2}\right ) a+A b^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+(a-b) (A b-a C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+(a-b) (A b-a C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\left (a^2 C+A b^2\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-b) \sqrt {a+b} (A b-a C) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {2 (a-b) \sqrt {a+b} \left (a^2 C+A b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}+\frac {2 (a-b) \sqrt {a+b} (A b-a C) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{b}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x])^(3/2) 
,x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((-2*Sqrt[a + b]*C*Cot[c + d*x]*Elli 
pticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c 
+ d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[( 
a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d) + (((2*(a - b)*Sqrt[a + b]*(A*b^2 
+ a^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + 
b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/( 
a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a^2*d) + (2*(a - b)*Sqrt[a 
+ b]*(A*b - a*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(S 
qrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + 
d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/(a^2 - b^2) - 
 (2*(A*b^2 + a^2*C)*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a 
 + b*Cos[c + d*x]]))/b)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3531
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[C/ 
(b*d)   Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[1/ 
b   Int[(A*b - a*C*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[d*Sin[e + 
 f*x]]), x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1101\) vs. \(2(432)=864\).

Time = 20.25 (sec) , antiderivative size = 1102, normalized size of antiderivative = 2.29

method result size
default \(\text {Expression too large to display}\) \(1102\)
parts \(\text {Expression too large to display}\) \(1164\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

2/d/a/b/(a-b)/(a+b)*sec(d*x+c)^(1/2)*(a+b*cos(d*x+c))^(1/2)*(((1-cos(d*x+c 
))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x+c))*b^2*a*A+(-(1-cos(d*x+c))^3*csc(d* 
x+c)^3+csc(d*x+c)-cot(d*x+c))*b*a^2*C+(-(1-cos(d*x+c))^3*csc(d*x+c)^3+csc( 
d*x+c)-cot(d*x+c))*b^3*A+((1-cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x 
+c))*a^3*C-2*A*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2* 
b*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c 
)))^(1/2)-2*A*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c) 
))^(1/2)+2*A*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2* 
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)) 
)^(1/2)+2*A*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3*(co 
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^( 
1/2)-2*C*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*(cos 
(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1 
/2)-2*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos 
(d*x+c)))^(1/2)*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b 
^2+2*C*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*(cos(d*x 
+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)+ 
2*C*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b*(cos(d*x+ 
c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2...
 

Fricas [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, al 
gorithm="fricas")
 

Output:

integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c) 
)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2), x)
 

Sympy [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Integral((A + C*cos(c + d*x)**2)*sqrt(sec(c + d*x))/(a + b*cos(c + d*x))** 
(3/2), x)
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, al 
gorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^( 
3/2), x)
 

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, al 
gorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a)^( 
3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^( 
3/2),x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + b*cos(c + d*x))^( 
3/2), x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+b \cos (c+d x))^{3/2}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) a \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**2)/(cos(c + 
 d*x)**2*b**2 + 2*cos(c + d*x)*a*b + a**2),x)*c + int((sqrt(sec(c + d*x))* 
sqrt(cos(c + d*x)*b + a))/(cos(c + d*x)**2*b**2 + 2*cos(c + d*x)*a*b + a** 
2),x)*a