\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) (A+C \cos ^2(c+d x)) \, dx\) [127]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 165 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {2 a (9 A+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {2 a (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a (7 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a (9 A+7 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {2 a C \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a C \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \] Output:

2/15*a*(9*A+7*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*a*(7*A+5*C)* 
InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/21*a*(7*A+5*C)*cos(d*x+c)^(1/2) 
*sin(d*x+c)/d+2/45*a*(9*A+7*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*a*C*cos(d 
*x+c)^(5/2)*sin(d*x+c)/d+2/9*a*C*cos(d*x+c)^(7/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.82 (sec) , antiderivative size = 918, normalized size of antiderivative = 5.56 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

Integrate[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2),x 
]
 

Output:

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(-1/15*((9*A 
 + 7*C)*Cot[c])/d + ((28*A + 23*C)*Cos[d*x]*Sin[c])/(84*d) + ((18*A + 19*C 
)*Cos[2*d*x]*Sin[2*c])/(180*d) + (C*Cos[3*d*x]*Sin[3*c])/(28*d) + (C*Cos[4 
*d*x]*Sin[4*c])/(72*d) + ((28*A + 23*C)*Cos[c]*Sin[d*x])/(84*d) + ((18*A + 
 19*C)*Cos[2*c]*Sin[2*d*x])/(180*d) + (C*Cos[3*c]*Sin[3*d*x])/(28*d) + (C* 
Cos[4*c]*Sin[4*d*x])/(72*d)) - (A*(1 + Cos[c + d*x])*Csc[c]*Hypergeometric 
PFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*S 
ec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 
 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[ 
Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (5*C*(1 + Cos[c + d*x])*Csc[c]*Hyper 
geometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d* 
x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt 
[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x 
- ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (3*A*(1 + Cos[c + d*x])*Cs 
c[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x 
 + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x 
+ ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x 
 + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + A 
rcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[T 
an[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x ...
 

Rubi [A] (verified)

Time = 0.77 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 3513, 27, 3042, 3502, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a) \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3513

\(\displaystyle \frac {2}{9} \int \frac {1}{2} \cos ^{\frac {3}{2}}(c+d x) \left (9 a C \cos ^2(c+d x)+a (9 A+7 C) \cos (c+d x)+9 a A\right )dx+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \int \cos ^{\frac {3}{2}}(c+d x) \left (9 a C \cos ^2(c+d x)+a (9 A+7 C) \cos (c+d x)+9 a A\right )dx+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (9 a C \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (9 A+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )+9 a A\right )dx+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{9} \left (\frac {2}{7} \int \frac {1}{2} \cos ^{\frac {3}{2}}(c+d x) (9 a (7 A+5 C)+7 a (9 A+7 C) \cos (c+d x))dx+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \int \cos ^{\frac {3}{2}}(c+d x) (9 a (7 A+5 C)+7 a (9 A+7 C) \cos (c+d x))dx+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (9 a (7 A+5 C)+7 a (9 A+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (9 a (7 A+5 C) \int \cos ^{\frac {3}{2}}(c+d x)dx+7 a (9 A+7 C) \int \cos ^{\frac {5}{2}}(c+d x)dx\right )+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (9 a (7 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+7 a (9 A+7 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx\right )+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (7 a (9 A+7 C) \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+9 a (7 A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (7 a (9 A+7 C) \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+9 a (7 A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (9 a (7 A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+7 a (9 A+7 C) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )\right )+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{9} \left (\frac {1}{7} \left (7 a (9 A+7 C) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+9 a (7 A+5 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {18 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{9 d}\)

Input:

Int[Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2),x]
 

Output:

(2*a*C*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(9*d) + ((18*a*C*Cos[c + d*x]^(5/2 
)*Sin[c + d*x])/(7*d) + (9*a*(7*A + 5*C)*((2*EllipticF[(c + d*x)/2, 2])/(3 
*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)) + 7*a*(9*A + 7*C)*((6*Ell 
ipticE[(c + d*x)/2, 2])/(5*d) + (2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)) 
)/7)/9
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3513
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3) 
)), x] + Simp[1/(b*(m + 3))   Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c 
*(m + 3) + b*d*(C*(m + 2) + A*(m + 3))*Sin[e + f*x] - (2*a*C*d - b*c*C*(m + 
 3))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(405\) vs. \(2(148)=296\).

Time = 7.59 (sec) , antiderivative size = 406, normalized size of antiderivative = 2.46

method result size
default \(-\frac {2 \sqrt {\left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (-1120 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+2960 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-504 A -3152 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (924 A +1792 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-336 A -408 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-189 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+75 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(406\)
parts \(\text {Expression too large to display}\) \(798\)

Input:

int(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/315*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(-1120*C 
*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10+2960*C*sin(1/2*d*x+1/2*c)^8*cos( 
1/2*d*x+1/2*c)+(-504*A-3152*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(92 
4*A+1792*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-336*A-408*C)*sin(1/2 
*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+105*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin 
(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-189*A*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1 
/2*d*x+1/2*c),2^(1/2))+75*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*C*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2* 
c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2* 
d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.23 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {-15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (9 \, A + 7 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (9 \, A + 7 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (35 \, C a \cos \left (d x + c\right )^{3} + 45 \, C a \cos \left (d x + c\right )^{2} + 7 \, {\left (9 \, A + 7 \, C\right )} a \cos \left (d x + c\right ) + 15 \, {\left (7 \, A + 5 \, C\right )} a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, d} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2),x, algorith 
m="fricas")
 

Output:

1/315*(-15*I*sqrt(2)*(7*A + 5*C)*a*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) + 15*I*sqrt(2)*(7*A + 5*C)*a*weierstrassPInverse(-4, 0, 
 cos(d*x + c) - I*sin(d*x + c)) + 21*I*sqrt(2)*(9*A + 7*C)*a*weierstrassZe 
ta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21* 
I*sqrt(2)*(9*A + 7*C)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
cos(d*x + c) - I*sin(d*x + c))) + 2*(35*C*a*cos(d*x + c)^3 + 45*C*a*cos(d* 
x + c)^2 + 7*(9*A + 7*C)*a*cos(d*x + c) + 15*(7*A + 5*C)*a)*sqrt(cos(d*x + 
 c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(a+a*cos(d*x+c))*(A+C*cos(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2),x, algorith 
m="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)*cos(d*x + c)^(3/2), 
x)
 

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2),x, algorith 
m="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)*cos(d*x + c)^(3/2), 
x)
 

Mupad [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.01 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {2\,A\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}-\frac {2\,A\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(3/2)*(A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x)),x)
 

Output:

(2*A*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) - (2*A*a*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, c 
os(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*C*a*cos(c + d*x)^(9/2)*s 
in(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x 
)^2)^(1/2)) - (2*C*a*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/2, 11/4 
], 15/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right ) \, dx=a \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2),x)
 

Output:

a*(int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a + int(sqrt(cos(c + d*x))*cos(c 
 + d*x)**4,x)*c + int(sqrt(cos(c + d*x))*cos(c + d*x)**3,x)*c + int(sqrt(c 
os(c + d*x))*cos(c + d*x)**2,x)*a)