\(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 (A+C \cos ^2(c+d x)) \, dx\) [135]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 197 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {16 a^2 (3 A+2 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^2 (7 A+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {4 a^2 (7 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a^2 (21 A+19 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d}+\frac {8 C \cos ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d} \] Output:

16/15*a^2*(3*A+2*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/21*a^2*(7*A+ 
5*C)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+4/21*a^2*(7*A+5*C)*cos(d*x+c 
)^(1/2)*sin(d*x+c)/d+2/105*a^2*(21*A+19*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2 
/9*C*cos(d*x+c)^(3/2)*(a+a*cos(d*x+c))^2*sin(d*x+c)/d+8/63*C*cos(d*x+c)^(3 
/2)*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.95 (sec) , antiderivative size = 936, normalized size of antiderivative = 4.75 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2) 
,x]
 

Output:

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*((-4*(3*A + 
 2*C)*Cot[c])/(15*d) + ((28*A + 23*C)*Cos[d*x]*Sin[c])/(84*d) + ((18*A + 3 
7*C)*Cos[2*d*x]*Sin[2*c])/(360*d) + (C*Cos[3*d*x]*Sin[3*c])/(28*d) + (C*Co 
s[4*d*x]*Sin[4*c])/(144*d) + ((28*A + 23*C)*Cos[c]*Sin[d*x])/(84*d) + ((18 
*A + 37*C)*Cos[2*c]*Sin[2*d*x])/(360*d) + (C*Cos[3*c]*Sin[3*d*x])/(28*d) + 
 (C*Cos[4*c]*Sin[4*d*x])/(144*d)) - (A*(a + a*Cos[c + d*x])^2*Csc[c]*Hyper 
geometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d* 
x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt 
[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x 
- ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (5*C*(a + a*Cos[c + d*x])^2 
*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]* 
Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[C 
ot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt 
[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (2*A*(a + a*C 
os[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4 
}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/( 
Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sq 
rt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2] 
) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*C 
os[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqr...
 

Rubi [A] (verified)

Time = 1.29 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.05, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.486, Rules used = {3042, 3525, 27, 3042, 3455, 27, 3042, 3447, 3042, 3502, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2 \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3525

\(\displaystyle \frac {2 \int \frac {1}{2} \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2 (3 a (3 A+C)+4 a C \cos (c+d x))dx}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2 (3 a (3 A+C)+4 a C \cos (c+d x))dx}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (3 a (3 A+C)+4 a C \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {2}{7} \int \frac {3}{2} \sqrt {\cos (c+d x)} (\cos (c+d x) a+a) \left ((21 A+11 C) a^2+(21 A+19 C) \cos (c+d x) a^2\right )dx+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3}{7} \int \sqrt {\cos (c+d x)} (\cos (c+d x) a+a) \left ((21 A+11 C) a^2+(21 A+19 C) \cos (c+d x) a^2\right )dx+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left ((21 A+11 C) a^2+(21 A+19 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )dx+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {3}{7} \int \sqrt {\cos (c+d x)} \left ((21 A+19 C) \cos ^2(c+d x) a^3+(21 A+11 C) a^3+\left ((21 A+11 C) a^3+(21 A+19 C) a^3\right ) \cos (c+d x)\right )dx+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left ((21 A+19 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^3+(21 A+11 C) a^3+\left ((21 A+11 C) a^3+(21 A+19 C) a^3\right ) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2}{5} \int \sqrt {\cos (c+d x)} \left (28 (3 A+2 C) a^3+15 (7 A+5 C) \cos (c+d x) a^3\right )dx+\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (28 (3 A+2 C) a^3+15 (7 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^3\right )dx+\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2}{5} \left (15 a^3 (7 A+5 C) \int \cos ^{\frac {3}{2}}(c+d x)dx+28 a^3 (3 A+2 C) \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2}{5} \left (28 a^3 (3 A+2 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+15 a^3 (7 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx\right )+\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2}{5} \left (28 a^3 (3 A+2 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+15 a^3 (7 A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2}{5} \left (28 a^3 (3 A+2 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+15 a^3 (7 A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2}{5} \left (15 a^3 (7 A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {56 a^3 (3 A+2 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {3}{7} \left (\frac {2 a^3 (21 A+19 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}+\frac {2}{5} \left (\frac {56 a^3 (3 A+2 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+15 a^3 (7 A+5 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )\right )+\frac {8 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{7 d}}{9 a}+\frac {2 C \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}{9 d}\)

Input:

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2),x]
 

Output:

(2*C*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(9*d) + ((8*C 
*Cos[c + d*x]^(3/2)*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x])/(7*d) + (3*((2* 
a^3*(21*A + 19*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d) + (2*((56*a^3*(3* 
A + 2*C)*EllipticE[(c + d*x)/2, 2])/d + 15*a^3*(7*A + 5*C)*((2*EllipticF[( 
c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d))))/5))/7 
)/(9*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3525
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1 
)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + n + 2))   Int[(a + b*Sin[e + f* 
x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1 
)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] &&  !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(407\) vs. \(2(180)=360\).

Time = 6.33 (sec) , antiderivative size = 408, normalized size of antiderivative = 2.07

method result size
default \(-\frac {4 \sqrt {\left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (-560 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+1840 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-252 A -2368 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (672 A +1568 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-273 A -387 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+105 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-252 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+75 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-168 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(408\)
parts \(\text {Expression too large to display}\) \(949\)

Input:

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x,method=_RETUR 
NVERBOSE)
 

Output:

-4/315*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-560* 
C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^10+1840*C*sin(1/2*d*x+1/2*c)^8*cos 
(1/2*d*x+1/2*c)+(-252*A-2368*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(6 
72*A+1568*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-273*A-387*C)*sin(1/ 
2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+105*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si 
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-252*A*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2))+75*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-168*C*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2 
*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2 
*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 219, normalized size of antiderivative = 1.11 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 i \, \sqrt {2} {\left (7 \, A + 5 \, C\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 84 i \, \sqrt {2} {\left (3 \, A + 2 \, C\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 84 i \, \sqrt {2} {\left (3 \, A + 2 \, C\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (35 \, C a^{2} \cos \left (d x + c\right )^{3} + 90 \, C a^{2} \cos \left (d x + c\right )^{2} + 7 \, {\left (9 \, A + 16 \, C\right )} a^{2} \cos \left (d x + c\right ) + 30 \, {\left (7 \, A + 5 \, C\right )} a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x, algori 
thm="fricas")
 

Output:

-2/315*(15*I*sqrt(2)*(7*A + 5*C)*a^2*weierstrassPInverse(-4, 0, cos(d*x + 
c) + I*sin(d*x + c)) - 15*I*sqrt(2)*(7*A + 5*C)*a^2*weierstrassPInverse(-4 
, 0, cos(d*x + c) - I*sin(d*x + c)) - 84*I*sqrt(2)*(3*A + 2*C)*a^2*weierst 
rassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
 + 84*I*sqrt(2)*(3*A + 2*C)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (35*C*a^2*cos(d*x + c)^3 + 90*C* 
a^2*cos(d*x + c)^2 + 7*(9*A + 16*C)*a^2*cos(d*x + c) + 30*(7*A + 5*C)*a^2) 
*sqrt(cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**2*(A+C*cos(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x, algori 
thm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)) 
, x)
 

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x, algori 
thm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)^2*sqrt(cos(d*x + c)) 
, x)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 0.62 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.23 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx=\frac {2\,A\,a^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,A\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {4\,C\,a^2\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a^2\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{11\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^2,x)
 

Output:

(2*A*a^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x) 
/2, 2))/3))/d + (2*A*a^2*ellipticE(c/2 + (d*x)/2, 2))/d - (2*A*a^2*cos(c + 
 d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d 
*(sin(c + d*x)^2)^(1/2)) - (2*C*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hyperg 
eom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (4*C 
*a^2*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d 
*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2)) - (2*C*a^2*cos(c + d*x)^(11/2)*sin(c 
+ d*x)*hypergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(11*d*(sin(c + d*x)^2 
)^(1/2))
 

Reduce [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \, dx=a^{2} \left (\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{4}d x \right ) c +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) c \right ) \] Input:

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2),x)
 

Output:

a**2*(int(sqrt(cos(c + d*x)),x)*a + 2*int(sqrt(cos(c + d*x))*cos(c + d*x), 
x)*a + int(sqrt(cos(c + d*x))*cos(c + d*x)**4,x)*c + 2*int(sqrt(cos(c + d* 
x))*cos(c + d*x)**3,x)*c + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*a + i 
nt(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*c)