\(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx\) [163]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 189 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {(7 A+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 (5 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {2 (5 A+C) \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(7 A+C) \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {(7 A+C) \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\cos (c+d x))}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \] Output:

(7*A+C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2/3*(5*A+C)*InverseJac 
obiAM(1/2*d*x+1/2*c,2^(1/2))/a^2/d+2/3*(5*A+C)*sin(d*x+c)/a^2/d/cos(d*x+c) 
^(3/2)-(7*A+C)*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)-1/3*(7*A+C)*sin(d*x+c)/a^ 
2/d/cos(d*x+c)^(3/2)/(1+cos(d*x+c))-1/3*(A+C)*sin(d*x+c)/d/cos(d*x+c)^(3/2 
)/(a+a*cos(d*x+c))^2
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.50 (sec) , antiderivative size = 1005, normalized size of antiderivative = 5.32 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx =\text {Too large to display} \] Input:

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^ 
2),x]
 

Output:

(-20*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, 
Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - S 
in[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTa 
n[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x] 
)^2*Sqrt[1 + Cot[c]^2]) - (4*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Hypergeometri 
cPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - Ar 
cTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2 
]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/ 
(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (Cos[c/2 + (d*x)/2]^4*Sq 
rt[Cos[c + d*x]]*((-2*(4*A + 3*A*Cos[c] + C*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[ 
c])/d - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]) 
)/(3*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(3*A*Sin[(d*x)/2] + C*Sin[(d*x)/2 
]))/d + (8*A*Sec[c]*Sec[c + d*x]^2*Sin[d*x])/(3*d) + (8*Sec[c]*Sec[c + d*x 
]*(A*Sin[c] - 6*A*Sin[d*x]))/(3*d) - (2*(A + C)*Sec[c/2 + (d*x)/2]^2*Tan[c 
/2])/(3*d)))/(a + a*Cos[c + d*x])^2 - (7*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*S 
ec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]] 
^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]] 
*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]] 
*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan 
[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 ...
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.371, Rules used = {3042, 3521, 27, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {3 a (3 A+C)-a (5 A-C) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 a (3 A+C)-a (5 A-C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 a (3 A+C)-a (5 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {3 \left (2 a^2 (5 A+C)-a^2 (7 A+C) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 \int \frac {2 a^2 (5 A+C)-a^2 (7 A+C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \int \frac {2 a^2 (5 A+C)-a^2 (7 A+C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {3 \left (2 a^2 (5 A+C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx-a^2 (7 A+C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \left (2 a^2 (5 A+C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-a^2 (7 A+C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {3 \left (2 a^2 (5 A+C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (7 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \left (2 a^2 (5 A+C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (7 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {3 \left (2 a^2 (5 A+C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (7 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {3 \left (2 a^2 (5 A+C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (7 A+C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {2 (7 A+C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

Input:

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Cos[c + d*x])^2),x]
 

Output:

-1/3*((A + C)*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x])^2) 
+ ((-2*(7*A + C)*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(1 + Cos[c + d*x])) + 
 (3*(2*a^2*(5*A + C)*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x 
])/(3*d*Cos[c + d*x]^(3/2))) - a^2*(7*A + C)*((-2*EllipticE[(c + d*x)/2, 2 
])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))))/a^2)/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(710\) vs. \(2(176)=352\).

Time = 2.74 (sec) , antiderivative size = 711, normalized size of antiderivative = 3.76

method result size
default \(\text {Expression too large to display}\) \(711\)

Input:

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x,method=_RETUR 
NVERBOSE)
 

Output:

-1/2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^2*(1/3*(A 
+C)*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*El 
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2) 
))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1 
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))- 
3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)-12*sin(1/2*d*x 
+1/2*c)^6+20*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2* 
c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(sin(1/2*d*x+1/2*c 
)^2-1)+4*A*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/ 
2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+4*A*(-1/ 
6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/ 
(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2* 
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2) 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))-8*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/ 
2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2* 
sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si 
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/ 
2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 427, normalized size of antiderivative = 2.26 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (3 \, {\left (7 \, A + C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (8 \, A + C\right )} \cos \left (d x + c\right )^{2} + 8 \, A \cos \left (d x + c\right ) - 2 \, A\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 2 \, {\left (\sqrt {2} {\left (5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (\sqrt {2} {\left (-5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (-5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-7 i \, A - i \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (-7 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-7 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (7 i \, A + i \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (7 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (7 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="fricas")
 

Output:

-1/6*(2*(3*(7*A + C)*cos(d*x + c)^3 + 4*(8*A + C)*cos(d*x + c)^2 + 8*A*cos 
(d*x + c) - 2*A)*sqrt(cos(d*x + c))*sin(d*x + c) + 2*(sqrt(2)*(5*I*A + I*C 
)*cos(d*x + c)^4 + 2*sqrt(2)*(5*I*A + I*C)*cos(d*x + c)^3 + sqrt(2)*(5*I*A 
 + I*C)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d* 
x + c)) + 2*(sqrt(2)*(-5*I*A - I*C)*cos(d*x + c)^4 + 2*sqrt(2)*(-5*I*A - I 
*C)*cos(d*x + c)^3 + sqrt(2)*(-5*I*A - I*C)*cos(d*x + c)^2)*weierstrassPIn 
verse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(-7*I*A - I*C)*co 
s(d*x + c)^4 + 2*sqrt(2)*(-7*I*A - I*C)*cos(d*x + c)^3 + sqrt(2)*(-7*I*A - 
 I*C)*cos(d*x + c)^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co 
s(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2)*(7*I*A + I*C)*cos(d*x + c)^4 + 
2*sqrt(2)*(7*I*A + I*C)*cos(d*x + c)^3 + sqrt(2)*(7*I*A + I*C)*cos(d*x + c 
)^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c))))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d 
*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+a*cos(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*cos(d*x + c)^(5/2 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^2),x)
 

Output:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos(c + d*x))^2), x)
 

Reduce [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}+2 \cos \left (d x +c \right )^{4}+\cos \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+2 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x \right ) c}{a^{2}} \] Input:

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x)
 

Output:

(int(sqrt(cos(c + d*x))/(cos(c + d*x)**5 + 2*cos(c + d*x)**4 + cos(c + d*x 
)**3),x)*a + int(sqrt(cos(c + d*x))/(cos(c + d*x)**3 + 2*cos(c + d*x)**2 + 
 cos(c + d*x)),x)*c)/a**2