\(\int \frac {\sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [175]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 116 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \sqrt {a} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

2*a^(1/2)*C*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d+2/3*a*A*si 
n(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/3*A*(a+a*cos(d*x+c))^ 
(1/2)*sin(d*x+c)/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.78 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (3 \sqrt {2} C \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {3}{2}}(c+d x)+2 A \sin \left (\frac {3}{2} (c+d x)\right )\right )}{3 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^( 
5/2),x]
 

Output:

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*C*ArcSin[Sqrt[2]*S 
in[(c + d*x)/2]]*Cos[c + d*x]^(3/2) + 2*A*Sin[(3*(c + d*x))/2]))/(3*d*Cos[ 
c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {3042, 3523, 27, 3042, 3459, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \cos (c+d x)+a} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {2 \int \frac {\sqrt {\cos (c+d x) a+a} (a A+3 a C \cos (c+d x))}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x) a+a} (a A+3 a C \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a A+3 a C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {3 a C \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3 a C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {\frac {2 a^2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {6 a C \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\frac {6 a^{3/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^2 A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[(Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(5/2),x 
]
 

Output:

(2*A*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ((6 
*a^(3/2)*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (2 
*a^2*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))/(3*a 
)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(214\) vs. \(2(98)=196\).

Time = 4.60 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.85

method result size
parts \(\frac {2 A \sqrt {2}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{\frac {3}{2}}}+\frac {2 C \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}}\, \arctan \left (\frac {\sqrt {2}\, \left (\csc \left (\frac {d x}{2}+\frac {c}{2}\right )-\cot \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\sqrt {\frac {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}}}\right ) \left (1+\sec \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \sqrt {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\) \(215\)
default \(\sqrt {2}\, \left (\frac {2 A \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{\frac {3}{2}}}+\frac {2 C \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{\frac {3}{2}}}-\frac {8 C \left (5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{\frac {3}{2}}}+\frac {C \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\left (64 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-60 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+14\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (\csc \left (\frac {d x}{2}+\frac {c}{2}\right )-\cot \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\sqrt {\frac {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}}}\right ) \sqrt {\frac {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}}\, \left (12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+3+3 \sec \left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{3 d \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{\frac {5}{2}}}\right )\) \(446\)

Input:

int((a+a*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x,method=_R 
ETURNVERBOSE)
 

Output:

2/3*A*2^(1/2)/d/(-1+2*cos(1/2*d*x+1/2*c)^2)^(3/2)*(2*cos(1/2*d*x+1/2*c)+1) 
*(-1+2*cos(1/2*d*x+1/2*c))*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)*tan(1/2*d*x+1/2* 
c)+2*C/d*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)*((-1+2*cos(1/2*d*x+1/2*c)^2)/(cos( 
1/2*d*x+1/2*c)+1)^2)^(1/2)*arctan(2^(1/2)*(csc(1/2*d*x+1/2*c)-cot(1/2*d*x+ 
1/2*c))/((-1+2*cos(1/2*d*x+1/2*c)^2)/(cos(1/2*d*x+1/2*c)+1)^2)^(1/2))/(-1+ 
2*cos(1/2*d*x+1/2*c)^2)^(1/2)*(1+sec(1/2*d*x+1/2*c))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.22 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \, {\left ({\left (2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left (C \cos \left (d x + c\right )^{3} + C \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )\right )}}{3 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, al 
gorithm="fricas")
 

Output:

2/3*((2*A*cos(d*x + c) + A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*si 
n(d*x + c) + 3*(C*cos(d*x + c)^3 + C*cos(d*x + c)^2)*sqrt(a)*arctan(sqrt(a 
*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c) 
^2 + a*cos(d*x + c))))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + C \cos ^{2}{\left (c + d x \right )}\right )}{\cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+a*cos(d*x+c))**(1/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2),x)
 

Output:

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + C*cos(c + d*x)**2)/cos(c + d*x)** 
(5/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 339 vs. \(2 (98) = 196\).

Time = 0.22 (sec) , antiderivative size = 339, normalized size of antiderivative = 2.92 \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {3 \, C \sqrt {a} \arctan \left ({\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \sin \left (d x + c\right ), {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + \cos \left (d x + c\right )\right ) + \frac {2 \, A {\left (\frac {3 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {4 \, \sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {\sqrt {2} \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {5}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}}}{3 \, d} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, al 
gorithm="maxima")
                                                                                    
                                                                                    
 

Output:

1/3*(3*C*sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos( 
2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
 + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2* 
d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 
 1)) + cos(d*x + c)) + 2*A*(3*sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 
 1) - 4*sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + sqrt(2)*sqrt 
(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)*(sin(d*x + c)^2/(cos(d*x + c) + 1 
)^2 + 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(5/2)*(-sin(d*x + c)/(co 
s(d*x + c) + 1) + 1)^(5/2)*(2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + sin(d* 
x + c)^4/(cos(d*x + c) + 1)^4 + 1)))/d
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x, al 
gorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(5/2) 
,x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(5/2) 
, x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a \right ) \] Input:

int((a+a*cos(d*x+c))^(1/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2),x)
 

Output:

sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x),x)*c 
 + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x)*a)