\(\int \frac {(a+a \cos (c+d x))^{3/2} (A+C \cos ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [182]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 175 \[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^{3/2} (8 A+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}-\frac {a^2 (8 A-5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}-\frac {a (4 A-C) \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {2 A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

1/4*a^(3/2)*(8*A+7*C)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d- 
1/4*a^2*(8*A-5*C)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)-1/2 
*a*(4*A-C)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2)*sin(d*x+c)/d+2*A*(a+a*c 
os(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.68 \[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {2} (8 A+7 C) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+2 (8 A+C+7 C \cos (c+d x)+C \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x] 
^(3/2),x]
 

Output:

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*(8*A + 7*C)*ArcSin 
[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] + 2*(8*A + C + 7*C*Cos[c + d 
*x] + C*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(8*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 1.03 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.297, Rules used = {3042, 3523, 27, 3042, 3455, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^{3/2} (3 a A-a (4 A-C) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^{3/2} (3 a A-a (4 A-C) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a A-a (4 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a} \left (a^2 (8 A+C)-a^2 (8 A-5 C) \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x)}}dx-\frac {a^2 (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{4} \int \frac {\sqrt {\cos (c+d x) a+a} \left (a^2 (8 A+C)-a^2 (8 A-5 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}}dx-\frac {a^2 (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a^2 (8 A+C)-a^2 (8 A-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^2 (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} a^2 (8 A+7 C) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx-\frac {a^3 (8 A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {a^2 (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} a^2 (8 A+7 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^3 (8 A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {a^2 (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {\frac {1}{4} \left (-\frac {a^2 (8 A+7 C) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {a^3 (8 A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {a^2 (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\frac {1}{4} \left (\frac {a^{5/2} (8 A+7 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {a^3 (8 A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {a^2 (4 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[((a + a*Cos[c + d*x])^(3/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2) 
,x]
 

Output:

(2*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (-1 
/2*(a^2*(4*A - C)*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x] 
)/d + ((a^(5/2)*(8*A + 7*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c 
 + d*x]]])/d - (a^3*(8*A - 5*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a 
 + a*Cos[c + d*x]]))/4)/a
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [A] (verified)

Time = 5.38 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.14

method result size
default \(\frac {a \left (8 A \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) \cos \left (d x +c \right )+7 C \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) \cos \left (d x +c \right )+8 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (2 \cos \left (d x +c \right )+7\right ) C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{4 d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(200\)
parts \(\frac {2 A a \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\sin \left (d x +c \right )\right )}{d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )}+\frac {C a \left (7 \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\sin \left (2 d x +2 c \right )+7 \sin \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(225\)

Input:

int((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/4/d*a*(8*A*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))*cos(d*x+ 
c)+7*C*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))*cos(d*x+c)+8*A 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+sin(d*x+c)*cos(d*x+c)*(2*cos 
(d*x+c)+7)*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*(a*(1+cos(d*x+c)))^(1/2)/c 
os(d*x+c)^(1/2)/(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.95 \[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {{\left (2 \, C a \cos \left (d x + c\right )^{2} + 7 \, C a \cos \left (d x + c\right ) + 8 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2} + {\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="fricas")
 

Output:

1/4*((2*C*a*cos(d*x + c)^2 + 7*C*a*cos(d*x + c) + 8*A*a)*sqrt(a*cos(d*x + 
c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) + ((8*A + 7*C)*a*cos(d*x + c)^2 + 
(8*A + 7*C)*a*cos(d*x + c))*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(a 
)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))))/(d 
*cos(d*x + c)^2 + d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(3/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2078 vs. \(2 (151) = 302\).

Time = 0.45 (sec) , antiderivative size = 2078, normalized size of antiderivative = 11.87 \[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="maxima")
 

Output:

1/16*((2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1 
)^(1/4)*((a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x 
 + 2*c) + a*sin(2*d*x + 2*c) - (a*cos(2*d*x + 2*c) - 6*a)*sin(1/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c) + 1)) + (a*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c))) - a*cos(2*d*x + 2*c) + (a*cos(2*d*x + 2*c) - 6*a)*co 
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 6*a)*sin(1/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 7*(a*arctan2((cos(2*d* 
x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*a 
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2* 
d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
 + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - 
 a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*ar 
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2...
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, al 
gorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(3/2) 
,x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(3/2) 
, x)
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}d x \right ) c \right ) \] Input:

int((a+a*cos(d*x+c))^(3/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x),x) 
*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*a 
+ int(sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x),x)*c + int(sq 
rt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)),x)*c)