\(\int \frac {(a+a \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [193]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 210 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {5 a^{5/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {a^3 (64 A+15 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (8 A+5 C) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \] Output:

5*a^(5/2)*C*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/d-1/15*a^3*( 
64*A+15*C)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/5*a^2*(8 
*A+5*C)*(a+a*cos(d*x+c))^(1/2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/3*a*A*(a+a* 
cos(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*A*(a+a*cos(d*x+c))^(5/ 
2)*sin(d*x+c)/d/cos(d*x+c)^(5/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.67 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (300 \sqrt {2} C \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {5}{2}}(c+d x)+2 (196 A+60 C+(112 A+45 C) \cos (c+d x)+4 (43 A+15 C) \cos (2 (c+d x))+15 C \cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{120 d \cos ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[((a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x] 
^(7/2),x]
 

Output:

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(300*Sqrt[2]*C*ArcSin[Sqr 
t[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^(5/2) + 2*(196*A + 60*C + (112*A + 45* 
C)*Cos[c + d*x] + 4*(43*A + 15*C)*Cos[2*(c + d*x)] + 15*C*Cos[3*(c + d*x)] 
)*Sin[(c + d*x)/2]))/(120*d*Cos[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 1.37 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.05, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.378, Rules used = {3042, 3523, 27, 3042, 3454, 27, 3042, 3454, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^{5/2} (5 a A-a (2 A-5 C) \cos (c+d x))}{2 \cos ^{\frac {5}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^{5/2} (5 a A-a (2 A-5 C) \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)}dx}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2} \left (5 a A-a (2 A-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {2}{3} \int \frac {(\cos (c+d x) a+a)^{3/2} \left (3 a^2 (8 A+5 C)-a^2 (16 A-15 C) \cos (c+d x)\right )}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \int \frac {(\cos (c+d x) a+a)^{3/2} \left (3 a^2 (8 A+5 C)-a^2 (16 A-15 C) \cos (c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a^2 (8 A+5 C)-a^2 (16 A-15 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{3} \left (2 \int \frac {\sqrt {\cos (c+d x) a+a} \left (a^3 (32 A+45 C)-a^3 (64 A+15 C) \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x)}}dx+\frac {6 a^3 (8 A+5 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \left (\int \frac {\sqrt {\cos (c+d x) a+a} \left (a^3 (32 A+45 C)-a^3 (64 A+15 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}}dx+\frac {6 a^3 (8 A+5 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a^3 (32 A+45 C)-a^3 (64 A+15 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^3 (8 A+5 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {\frac {1}{3} \left (\frac {75}{2} a^3 C \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx-\frac {a^4 (64 A+15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {6 a^3 (8 A+5 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {75}{2} a^3 C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^4 (64 A+15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {6 a^3 (8 A+5 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {\frac {1}{3} \left (-\frac {75 a^3 C \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {a^4 (64 A+15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {6 a^3 (8 A+5 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )+\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\frac {10 a^2 A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (\frac {75 a^{7/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {a^4 (64 A+15 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {6 a^3 (8 A+5 C) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )}{5 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[((a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(7/2) 
,x]
 

Output:

(2*A*(a + a*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ( 
(10*a^2*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2) 
) + ((75*a^(7/2)*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]] 
)/d - (a^4*(64*A + 15*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Co 
s[c + d*x]]) + (6*a^3*(8*A + 5*C)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/( 
d*Sqrt[Cos[c + d*x]]))/3)/(5*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [A] (verified)

Time = 9.13 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.78

method result size
default \(\frac {a^{2} \left (C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) \left (75 \cos \left (d x +c \right )^{3}+75 \cos \left (d x +c \right )^{2}\right )+\left (86 \cos \left (d x +c \right )^{2}+28 \cos \left (d x +c \right )+6\right ) \sin \left (d x +c \right ) A +\sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} \left (15 \cos \left (d x +c \right )+30\right ) C \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{15 d \cos \left (d x +c \right )^{\frac {5}{2}} \left (1+\cos \left (d x +c \right )\right )}\) \(163\)
parts \(\frac {2 A \,a^{2} \sin \left (d x +c \right ) \left (43 \cos \left (d x +c \right )^{2}+14 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{15 d \cos \left (d x +c \right )^{\frac {5}{2}} \left (1+\cos \left (d x +c \right )\right )}+\frac {C \,a^{2} \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\frac {\sin \left (2 d x +2 c \right )}{2}+2 \sin \left (d x +c \right )+5 \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )\right )}{d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )}\) \(181\)

Input:

int((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/15/d*a^2*(C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan((cos(d*x+c)/(1+cos( 
d*x+c)))^(1/2)*tan(d*x+c))*(75*cos(d*x+c)^3+75*cos(d*x+c)^2)+(86*cos(d*x+c 
)^2+28*cos(d*x+c)+6)*sin(d*x+c)*A+sin(d*x+c)*cos(d*x+c)^2*(15*cos(d*x+c)+3 
0)*C)*(a*(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(5/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 190, normalized size of antiderivative = 0.90 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {{\left (15 \, C a^{2} \cos \left (d x + c\right )^{3} + 2 \, {\left (43 \, A + 15 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 28 \, A a^{2} \cos \left (d x + c\right ) + 6 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 75 \, {\left (C a^{2} \cos \left (d x + c\right )^{4} + C a^{2} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{15 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, al 
gorithm="fricas")
 

Output:

1/15*((15*C*a^2*cos(d*x + c)^3 + 2*(43*A + 15*C)*a^2*cos(d*x + c)^2 + 28*A 
*a^2*cos(d*x + c) + 6*A*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*s 
in(d*x + c) + 75*(C*a^2*cos(d*x + c)^4 + C*a^2*cos(d*x + c)^3)*sqrt(a)*arc 
tan(sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*co 
s(d*x + c)^2 + a*cos(d*x + c))))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1126 vs. \(2 (180) = 360\).

Time = 0.30 (sec) , antiderivative size = 1126, normalized size of antiderivative = 5.36 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, al 
gorithm="maxima")
 

Output:

1/60*(15*(2*(a^2*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))* 
sin(d*x + c) - (a^2*cos(d*x + c) - a^2)*sin(1/2*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c) + 1)))*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c 
os(2*d*x + 2*c) + 1)*sqrt(a) + 5*(a^2*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2 
*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 
 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x 
 + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin( 
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a^2*arctan2(-(cos(2*d*x + 2*c 
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 
+ sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*a 
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a^2*arctan2((cos(2 
*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + s 
in(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a^2*arctan2((cos(2*d*x + 2*c)^2...
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, al 
gorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^{7/2}} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^(7/2) 
,x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^(7/2) 
, x)
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\sqrt {a}\, a^{2} \left (2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}}d x \right ) a +2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}d x \right ) c \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x)
 

Output:

sqrt(a)*a**2*(2*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d* 
x),x)*c + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**4, 
x)*a + 2*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x 
)*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*a 
 + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*c + 
int(sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)),x)*c)