\(\int \frac {(B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx\) [260]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 40, antiderivative size = 131 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {3 (B-C) \text {arctanh}(\sin (c+d x))}{2 a d}+\frac {(4 B-3 C) \tan (c+d x)}{a d}-\frac {3 (B-C) \sec (c+d x) \tan (c+d x)}{2 a d}-\frac {(B-C) \sec ^2(c+d x) \tan (c+d x)}{d (a+a \cos (c+d x))}+\frac {(4 B-3 C) \tan ^3(c+d x)}{3 a d} \] Output:

-3/2*(B-C)*arctanh(sin(d*x+c))/a/d+(4*B-3*C)*tan(d*x+c)/a/d-3/2*(B-C)*sec( 
d*x+c)*tan(d*x+c)/a/d-(B-C)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*cos(d*x+c))+1/3 
*(4*B-3*C)*tan(d*x+c)^3/a/d
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(490\) vs. \(2(131)=262\).

Time = 5.61 (sec) , antiderivative size = 490, normalized size of antiderivative = 3.74 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \left (144 (B-C) \cos \left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+\sec \left (\frac {c}{2}\right ) \sec (c) \sec ^3(c+d x) \left (6 (B+C) \sin \left (\frac {d x}{2}\right )+3 (13 B-9 C) \sin \left (\frac {3 d x}{2}\right )-24 B \sin \left (c-\frac {d x}{2}\right )+12 C \sin \left (c-\frac {d x}{2}\right )-6 B \sin \left (c+\frac {d x}{2}\right )+6 C \sin \left (c+\frac {d x}{2}\right )-24 B \sin \left (2 c+\frac {d x}{2}\right )+24 C \sin \left (2 c+\frac {d x}{2}\right )+21 B \sin \left (c+\frac {3 d x}{2}\right )-9 C \sin \left (c+\frac {3 d x}{2}\right )+9 B \sin \left (2 c+\frac {3 d x}{2}\right )-9 C \sin \left (2 c+\frac {3 d x}{2}\right )-9 B \sin \left (3 c+\frac {3 d x}{2}\right )+9 C \sin \left (3 c+\frac {3 d x}{2}\right )+7 B \sin \left (c+\frac {5 d x}{2}\right )-3 C \sin \left (c+\frac {5 d x}{2}\right )+B \sin \left (2 c+\frac {5 d x}{2}\right )+3 C \sin \left (2 c+\frac {5 d x}{2}\right )-3 B \sin \left (3 c+\frac {5 d x}{2}\right )+3 C \sin \left (3 c+\frac {5 d x}{2}\right )-9 B \sin \left (4 c+\frac {5 d x}{2}\right )+9 C \sin \left (4 c+\frac {5 d x}{2}\right )+16 B \sin \left (2 c+\frac {7 d x}{2}\right )-12 C \sin \left (2 c+\frac {7 d x}{2}\right )+10 B \sin \left (3 c+\frac {7 d x}{2}\right )-6 C \sin \left (3 c+\frac {7 d x}{2}\right )+6 B \sin \left (4 c+\frac {7 d x}{2}\right )-6 C \sin \left (4 c+\frac {7 d x}{2}\right )\right )\right )}{48 a d (1+\cos (c+d x))} \] Input:

Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5)/(a + a*Cos[ 
c + d*x]),x]
 

Output:

(Cos[(c + d*x)/2]*(144*(B - C)*Cos[(c + d*x)/2]*(Log[Cos[(c + d*x)/2] - Si 
n[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + Sec[c/2]*Sec 
[c]*Sec[c + d*x]^3*(6*(B + C)*Sin[(d*x)/2] + 3*(13*B - 9*C)*Sin[(3*d*x)/2] 
 - 24*B*Sin[c - (d*x)/2] + 12*C*Sin[c - (d*x)/2] - 6*B*Sin[c + (d*x)/2] + 
6*C*Sin[c + (d*x)/2] - 24*B*Sin[2*c + (d*x)/2] + 24*C*Sin[2*c + (d*x)/2] + 
 21*B*Sin[c + (3*d*x)/2] - 9*C*Sin[c + (3*d*x)/2] + 9*B*Sin[2*c + (3*d*x)/ 
2] - 9*C*Sin[2*c + (3*d*x)/2] - 9*B*Sin[3*c + (3*d*x)/2] + 9*C*Sin[3*c + ( 
3*d*x)/2] + 7*B*Sin[c + (5*d*x)/2] - 3*C*Sin[c + (5*d*x)/2] + B*Sin[2*c + 
(5*d*x)/2] + 3*C*Sin[2*c + (5*d*x)/2] - 3*B*Sin[3*c + (5*d*x)/2] + 3*C*Sin 
[3*c + (5*d*x)/2] - 9*B*Sin[4*c + (5*d*x)/2] + 9*C*Sin[4*c + (5*d*x)/2] + 
16*B*Sin[2*c + (7*d*x)/2] - 12*C*Sin[2*c + (7*d*x)/2] + 10*B*Sin[3*c + (7* 
d*x)/2] - 6*C*Sin[3*c + (7*d*x)/2] + 6*B*Sin[4*c + (7*d*x)/2] - 6*C*Sin[4* 
c + (7*d*x)/2])))/(48*a*d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.90, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3042, 3508, 3042, 3457, 3042, 3227, 3042, 4254, 2009, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^5(c+d x) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^5 \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {\sec ^4(c+d x) (B+C \cos (c+d x))}{a \cos (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B+C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4 \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\int (a (4 B-3 C)-3 a (B-C) \cos (c+d x)) \sec ^4(c+d x)dx}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (4 B-3 C)-3 a (B-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {a (4 B-3 C) \int \sec ^4(c+d x)dx-3 a (B-C) \int \sec ^3(c+d x)dx}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (4 B-3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^4dx-3 a (B-C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {-\frac {a (4 B-3 C) \int \left (\tan ^2(c+d x)+1\right )d(-\tan (c+d x))}{d}-3 a (B-C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-3 a (B-C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {a (4 B-3 C) \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {-3 a (B-C) \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {a (4 B-3 C) \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-3 a (B-C) \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {a (4 B-3 C) \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {-3 a (B-C) \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {a (4 B-3 C) \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}}{a^2}-\frac {(B-C) \tan (c+d x) \sec ^2(c+d x)}{d (a \cos (c+d x)+a)}\)

Input:

Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5)/(a + a*Cos[c + d* 
x]),x]
 

Output:

-(((B - C)*Sec[c + d*x]^2*Tan[c + d*x])/(d*(a + a*Cos[c + d*x]))) + (-3*a* 
(B - C)*(ArcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d)) 
- (a*(4*B - 3*C)*(-Tan[c + d*x] - Tan[c + d*x]^3/3))/d)/a^2
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.58 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.30

method result size
parallelrisch \(\frac {27 \left (B -C \right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-27 \left (B -C \right ) \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+44 \left (\frac {\left (4 B -3 C \right ) \cos \left (3 d x +3 c \right )}{11}+\frac {\left (7 B -3 C \right ) \cos \left (2 d x +2 c \right )}{22}+\left (B -\frac {6 C}{11}\right ) \cos \left (d x +c \right )+\frac {B}{2}-\frac {3 C}{22}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{6 a d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(170\)
derivativedivides \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B -C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {B}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {2 B -C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\left (\frac {3 B}{2}-\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {\frac {5 B}{2}-\frac {3 C}{2}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-\frac {B}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-2 B +C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\left (-\frac {3 B}{2}+\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {\frac {5 B}{2}-\frac {3 C}{2}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}}{d a}\) \(190\)
default \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B -C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {B}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {2 B -C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\left (\frac {3 B}{2}-\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {\frac {5 B}{2}-\frac {3 C}{2}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-\frac {B}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {-2 B +C}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\left (-\frac {3 B}{2}+\frac {3 C}{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {\frac {5 B}{2}-\frac {3 C}{2}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}}{d a}\) \(190\)
norman \(\frac {\frac {\left (B -C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{a d}-\frac {2 B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{3 a d}+\frac {2 \left (2 B -C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a d}-\frac {\left (7 B -5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{a d}-\frac {\left (13 B -15 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 a d}-\frac {\left (13 B -9 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{3 a d}+\frac {2 \left (17 B -15 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 a d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}+\frac {3 \left (B -C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a d}-\frac {3 \left (B -C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a d}\) \(255\)
risch \(\frac {i \left (9 B \,{\mathrm e}^{6 i \left (d x +c \right )}-9 C \,{\mathrm e}^{6 i \left (d x +c \right )}+9 B \,{\mathrm e}^{5 i \left (d x +c \right )}-9 C \,{\mathrm e}^{5 i \left (d x +c \right )}+24 B \,{\mathrm e}^{4 i \left (d x +c \right )}-24 C \,{\mathrm e}^{4 i \left (d x +c \right )}+24 B \,{\mathrm e}^{3 i \left (d x +c \right )}-12 C \,{\mathrm e}^{3 i \left (d x +c \right )}+39 B \,{\mathrm e}^{2 i \left (d x +c \right )}-27 C \,{\mathrm e}^{2 i \left (d x +c \right )}+7 B \,{\mathrm e}^{i \left (d x +c \right )}-3 C \,{\mathrm e}^{i \left (d x +c \right )}+16 B -12 C \right )}{3 d a \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}-\frac {3 B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 a d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 a d}+\frac {3 B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 a d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 a d}\) \(276\)

Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5/(a+a*cos(d*x+c)),x,method=_ 
RETURNVERBOSE)
 

Output:

1/6*(27*(B-C)*(1/3*cos(3*d*x+3*c)+cos(d*x+c))*ln(tan(1/2*d*x+1/2*c)-1)-27* 
(B-C)*(1/3*cos(3*d*x+3*c)+cos(d*x+c))*ln(tan(1/2*d*x+1/2*c)+1)+44*(1/11*(4 
*B-3*C)*cos(3*d*x+3*c)+1/22*(7*B-3*C)*cos(2*d*x+2*c)+(B-6/11*C)*cos(d*x+c) 
+1/2*B-3/22*C)*tan(1/2*d*x+1/2*c))/a/d/(cos(3*d*x+3*c)+3*cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.28 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {9 \, {\left ({\left (B - C\right )} \cos \left (d x + c\right )^{4} + {\left (B - C\right )} \cos \left (d x + c\right )^{3}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 9 \, {\left ({\left (B - C\right )} \cos \left (d x + c\right )^{4} + {\left (B - C\right )} \cos \left (d x + c\right )^{3}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (4 \, {\left (4 \, B - 3 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (7 \, B - 3 \, C\right )} \cos \left (d x + c\right )^{2} - {\left (B - 3 \, C\right )} \cos \left (d x + c\right ) + 2 \, B\right )} \sin \left (d x + c\right )}{12 \, {\left (a d \cos \left (d x + c\right )^{4} + a d \cos \left (d x + c\right )^{3}\right )}} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5/(a+a*cos(d*x+c)),x, a 
lgorithm="fricas")
 

Output:

-1/12*(9*((B - C)*cos(d*x + c)^4 + (B - C)*cos(d*x + c)^3)*log(sin(d*x + c 
) + 1) - 9*((B - C)*cos(d*x + c)^4 + (B - C)*cos(d*x + c)^3)*log(-sin(d*x 
+ c) + 1) - 2*(4*(4*B - 3*C)*cos(d*x + c)^3 + (7*B - 3*C)*cos(d*x + c)^2 - 
 (B - 3*C)*cos(d*x + c) + 2*B)*sin(d*x + c))/(a*d*cos(d*x + c)^4 + a*d*cos 
(d*x + c)^3)
 

Sympy [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\int \frac {B \cos {\left (c + d x \right )} \sec ^{5}{\left (c + d x \right )}}{\cos {\left (c + d x \right )} + 1}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )} \sec ^{5}{\left (c + d x \right )}}{\cos {\left (c + d x \right )} + 1}\, dx}{a} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5/(a+a*cos(d*x+c)),x)
 

Output:

(Integral(B*cos(c + d*x)*sec(c + d*x)**5/(cos(c + d*x) + 1), x) + Integral 
(C*cos(c + d*x)**2*sec(c + d*x)**5/(cos(c + d*x) + 1), x))/a
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (125) = 250\).

Time = 0.05 (sec) , antiderivative size = 368, normalized size of antiderivative = 2.81 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {B {\left (\frac {2 \, {\left (\frac {9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {16 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {15 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a - \frac {3 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}} - \frac {9 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} + \frac {9 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} + \frac {6 \, \sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )} - 3 \, C {\left (\frac {2 \, {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {3 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a - \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} - \frac {3 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a} + \frac {3 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a} + \frac {2 \, \sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{6 \, d} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5/(a+a*cos(d*x+c)),x, a 
lgorithm="maxima")
 

Output:

1/6*(B*(2*(9*sin(d*x + c)/(cos(d*x + c) + 1) - 16*sin(d*x + c)^3/(cos(d*x 
+ c) + 1)^3 + 15*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/(a - 3*a*sin(d*x + c 
)^2/(cos(d*x + c) + 1)^2 + 3*a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - a*sin 
(d*x + c)^6/(cos(d*x + c) + 1)^6) - 9*log(sin(d*x + c)/(cos(d*x + c) + 1) 
+ 1)/a + 9*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a + 6*sin(d*x + c)/(a* 
(cos(d*x + c) + 1))) - 3*C*(2*(sin(d*x + c)/(cos(d*x + c) + 1) - 3*sin(d*x 
 + c)^3/(cos(d*x + c) + 1)^3)/(a - 2*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 
 + a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) - 3*log(sin(d*x + c)/(cos(d*x + 
c) + 1) + 1)/a + 3*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a + 2*sin(d*x 
+ c)/(a*(cos(d*x + c) + 1))))/d
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.39 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {\frac {9 \, {\left (B - C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a} - \frac {9 \, {\left (B - C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a} - \frac {6 \, {\left (B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a} + \frac {2 \, {\left (15 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 9 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 16 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 9 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3} a}}{6 \, d} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5/(a+a*cos(d*x+c)),x, a 
lgorithm="giac")
 

Output:

-1/6*(9*(B - C)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a - 9*(B - C)*log(abs(t 
an(1/2*d*x + 1/2*c) - 1))/a - 6*(B*tan(1/2*d*x + 1/2*c) - C*tan(1/2*d*x + 
1/2*c))/a + 2*(15*B*tan(1/2*d*x + 1/2*c)^5 - 9*C*tan(1/2*d*x + 1/2*c)^5 - 
16*B*tan(1/2*d*x + 1/2*c)^3 + 12*C*tan(1/2*d*x + 1/2*c)^3 + 9*B*tan(1/2*d* 
x + 1/2*c) - 3*C*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^3*a)) 
/d
 

Mupad [B] (verification not implemented)

Time = 0.48 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.16 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {\left (5\,B-3\,C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (4\,C-\frac {16\,B}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (3\,B-C\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-3\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a\right )}-\frac {3\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (B-C\right )}{a\,d}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (B-C\right )}{a\,d} \] Input:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^5*(a + a*cos(c + d*x 
))),x)
 

Output:

(tan(c/2 + (d*x)/2)^5*(5*B - 3*C) - tan(c/2 + (d*x)/2)^3*((16*B)/3 - 4*C) 
+ tan(c/2 + (d*x)/2)*(3*B - C))/(d*(a - 3*a*tan(c/2 + (d*x)/2)^2 + 3*a*tan 
(c/2 + (d*x)/2)^4 - a*tan(c/2 + (d*x)/2)^6)) - (3*atanh(tan(c/2 + (d*x)/2) 
)*(B - C))/(a*d) + (tan(c/2 + (d*x)/2)*(B - C))/(a*d)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 363, normalized size of antiderivative = 2.77 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{3} b -9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{3} c -9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right ) b +9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right ) c -9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{3} b +9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{3} c +9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right ) b -9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right ) c +9 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} b -9 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} c -6 \cos \left (d x +c \right ) b +6 \cos \left (d x +c \right ) c +16 \sin \left (d x +c \right )^{4} b -12 \sin \left (d x +c \right )^{4} c -24 \sin \left (d x +c \right )^{2} b +18 \sin \left (d x +c \right )^{2} c +6 b -6 c}{6 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5/(a+a*cos(d*x+c)),x)
 

Output:

(9*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**3*b - 9*cos(c + d* 
x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**3*c - 9*cos(c + d*x)*log(tan((c 
 + d*x)/2) - 1)*sin(c + d*x)*b + 9*cos(c + d*x)*log(tan((c + d*x)/2) - 1)* 
sin(c + d*x)*c - 9*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**3* 
b + 9*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**3*c + 9*cos(c + 
 d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)*b - 9*cos(c + d*x)*log(tan((c 
 + d*x)/2) + 1)*sin(c + d*x)*c + 9*cos(c + d*x)*sin(c + d*x)**2*b - 9*cos( 
c + d*x)*sin(c + d*x)**2*c - 6*cos(c + d*x)*b + 6*cos(c + d*x)*c + 16*sin( 
c + d*x)**4*b - 12*sin(c + d*x)**4*c - 24*sin(c + d*x)**2*b + 18*sin(c + d 
*x)**2*c + 6*b - 6*c)/(6*cos(c + d*x)*sin(c + d*x)*a*d*(sin(c + d*x)**2 - 
1))