\(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\) [281]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 34, antiderivative size = 118 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {(3 B-7 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(B-C) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {2 C \sin (c+d x)}{a d \sqrt {a+a \cos (c+d x)}} \] Output:

1/4*(3*B-7*C)*arctanh(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*cos(d*x+c))^(1/2 
))*2^(1/2)/a^(3/2)/d-1/2*(B-C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)+2*C*sin 
(d*x+c)/a/d/(a+a*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.88 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {-\left ((3 B-7 C) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right )\right )+\cos ^3\left (\frac {1}{2} (c+d x)\right ) (B-5 C-4 C \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )}{d (a (1+\cos (c+d x)))^{3/2} \left (-1+\sin ^2\left (\frac {1}{2} (c+d x)\right )\right )} \] Input:

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^(3/2),x 
]
 

Output:

(-((3*B - 7*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^5) + Cos[(c + d* 
x)/2]^3*(B - 5*C - 4*C*Cos[c + d*x])*Sin[(c + d*x)/2])/(d*(a*(1 + Cos[c + 
d*x]))^(3/2)*(-1 + Sin[(c + d*x)/2]^2))
 

Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {3042, 3498, 27, 3042, 3230, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3498

\(\displaystyle -\frac {\int -\frac {3 a (B-C)+4 a C \cos (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {(B-C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 a (B-C)+4 a C \cos (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(B-C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 a (B-C)+4 a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(B-C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3230

\(\displaystyle \frac {a (3 B-7 C) \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx+\frac {8 a C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(B-C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (3 B-7 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {8 a C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(B-C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\frac {8 a C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {2 a (3 B-7 C) \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {(B-C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\sqrt {2} \sqrt {a} (3 B-7 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {8 a C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(B-C) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

Input:

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + a*Cos[c + d*x])^(3/2),x]
 

Output:

-1/2*((B - C)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^(3/2)) + ((Sqrt[2]*Sqr 
t[a]*(3*B - 7*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c 
+ d*x]])])/d + (8*a*C*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(4*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3230
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(b*(m + 1))   Int[(a + b*Sin[e 
 + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] 
&& EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 3498
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a* 
B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[1 
/(a^2*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b 
*B - a*C) + b*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
 B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(255\) vs. \(2(101)=202\).

Time = 0.42 (sec) , antiderivative size = 256, normalized size of antiderivative = 2.17

method result size
default \(\frac {\sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \left (3 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} B -7 C \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +8 C \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \sqrt {a}-B \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \sqrt {a}+C \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \sqrt {a}\right )}{4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(256\)
parts \(\frac {B \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \left (3 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\right )}{4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}+\frac {C \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \left (-7 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +8 \sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {a}\, \sqrt {2}\, \sqrt {\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a}\right )}{4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(315\)

Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x,method=_RETURNV 
ERBOSE)
 

Output:

1/4*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(3*2^(1/2)*ln(2*(2*a^(1/2)*(sin(1/2*d*x 
+1/2*c)^2*a)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*a*cos(1/2*d*x+1/2*c)^2*B-7*C*2 
^(1/2)*ln(2*(2*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a)/cos(1/2*d*x+1/2 
*c))*cos(1/2*d*x+1/2*c)^2*a+8*C*2^(1/2)*cos(1/2*d*x+1/2*c)^2*(sin(1/2*d*x+ 
1/2*c)^2*a)^(1/2)*a^(1/2)-B*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2) 
+C*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2))/cos(1/2*d*x+1/2*c)/a^(5 
/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.60 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left ({\left (3 \, B - 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, B - 7 \, C\right )} \cos \left (d x + c\right ) + 3 \, B - 7 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (4 \, C \cos \left (d x + c\right ) - B + 5 \, C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorith 
m="fricas")
 

Output:

-1/8*(sqrt(2)*((3*B - 7*C)*cos(d*x + c)^2 + 2*(3*B - 7*C)*cos(d*x + c) + 3 
*B - 7*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + 
 a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos 
(d*x + c) + 1)) - 4*(4*C*cos(d*x + c) - B + 5*C)*sqrt(a*cos(d*x + c) + a)* 
sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (B + C \cos {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(3/2),x)
 

Output:

Integral((B + C*cos(c + d*x))*cos(c + d*x)/(a*(cos(c + d*x) + 1))**(3/2), 
x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [F(-2)]

Exception generated. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, algorith 
m="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + a*cos(c + d*x))^(3/2),x)
 

Output:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + a*cos(c + d*x))^(3/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) c \right )}{a^{2}} \] Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*cos(c + d*x))/(cos(c + d*x)**2 + 2*c 
os(c + d*x) + 1),x)*b + int((sqrt(cos(c + d*x) + 1)*cos(c + d*x)**2)/(cos( 
c + d*x)**2 + 2*cos(c + d*x) + 1),x)*c))/a**2