\(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [288]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 30, antiderivative size = 83 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

-2*C*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*B*InverseJacobiAM(1/2*d*x 
+1/2*c,2^(1/2))/d+2/3*B*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2*C*sin(d*x+c)/d/cos 
(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.78 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-6 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {2 (B+3 C \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}}{3 d} \] Input:

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Cos[c + d*x]^(7/2),x]
 

Output:

(-6*C*EllipticE[(c + d*x)/2, 2] + 2*B*EllipticF[(c + d*x)/2, 2] + (2*(B + 
3*C*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^(3/2))/(3*d)
 

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3042, 3489, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3489

\(\displaystyle \int \frac {B+C \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B+C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle B \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx+C \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+C \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle B \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle B \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+C \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\)

Input:

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Cos[c + d*x]^(7/2),x]
 

Output:

B*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x 
]^(3/2))) + C*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt 
[Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3489
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + 
(C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b   Int[(b*Sin[e + f* 
x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(396\) vs. \(2(78)=156\).

Time = 2.69 (sec) , antiderivative size = 397, normalized size of antiderivative = 4.78

method result size
default \(\frac {2 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-12 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+6 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(397\)
parts \(-\frac {2 B \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}-\frac {2 C \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(397\)

Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE 
)
 

Output:

2/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d 
*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)/sin(1/2*d*x+1/2*c)^3*(2*B*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x 
+1/2*c)+6*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+2*B*cos(1/2*d*x 
+1/2*c)*sin(1/2*d*x+1/2*c)^2-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x 
+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*C*sin(1/2*d*x+1 
/2*c)^2*cos(1/2*d*x+1/2*c)-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x 
+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+ 
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 175, normalized size of antiderivative = 2.11 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} C \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} C \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, C \cos \left (d x + c\right ) + B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="fri 
cas")
 

Output:

1/3*(-I*sqrt(2)*B*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c)) + I*sqrt(2)*B*cos(d*x + c)^2*weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*C*cos(d*x + c)^2*weierstrassZe 
ta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I 
*sqrt(2)*C*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*C*cos(d*x + c) + B)*sqrt(cos(d*x 
+ c))*sin(d*x + c))/(d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="max 
ima")
                                                                                    
                                                                                    
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/cos(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorithm="gia 
c")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/cos(d*x + c)^(7/2), x)
 

Mupad [B] (verification not implemented)

Time = 0.55 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.05 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,B\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/cos(c + d*x)^(7/2),x)
 

Output:

(2*B*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c 
+ d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*sin(c + d*x)*hypergeom([-1/4, 
1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) c \] Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x)
 

Output:

int(sqrt(cos(c + d*x))/cos(c + d*x)**3,x)*b + int(sqrt(cos(c + d*x))/cos(c 
 + d*x)**2,x)*c