\(\int \cos ^4(c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \, dx\) [290]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 132 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {1}{16} (6 A+5 C) x+\frac {B \sin (c+d x)}{d}+\frac {(6 A+5 C) \cos (c+d x) \sin (c+d x)}{16 d}+\frac {(6 A+5 C) \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {C \cos ^5(c+d x) \sin (c+d x)}{6 d}-\frac {2 B \sin ^3(c+d x)}{3 d}+\frac {B \sin ^5(c+d x)}{5 d} \] Output:

1/16*(6*A+5*C)*x+B*sin(d*x+c)/d+1/16*(6*A+5*C)*cos(d*x+c)*sin(d*x+c)/d+1/2 
4*(6*A+5*C)*cos(d*x+c)^3*sin(d*x+c)/d+1/6*C*cos(d*x+c)^5*sin(d*x+c)/d-2/3* 
B*sin(d*x+c)^3/d+1/5*B*sin(d*x+c)^5/d
 

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.77 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {960 B \sin (c+d x)-640 B \sin ^3(c+d x)+192 B \sin ^5(c+d x)+5 (72 A c+60 c C+72 A d x+60 C d x+(48 A+45 C) \sin (2 (c+d x))+(6 A+9 C) \sin (4 (c+d x))+C \sin (6 (c+d x)))}{960 d} \] Input:

Integrate[Cos[c + d*x]^4*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]
 

Output:

(960*B*Sin[c + d*x] - 640*B*Sin[c + d*x]^3 + 192*B*Sin[c + d*x]^5 + 5*(72* 
A*c + 60*c*C + 72*A*d*x + 60*C*d*x + (48*A + 45*C)*Sin[2*(c + d*x)] + (6*A 
 + 9*C)*Sin[4*(c + d*x)] + C*Sin[6*(c + d*x)]))/(960*d)
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.95, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.379, Rules used = {3042, 3502, 3042, 3227, 3042, 3113, 2009, 3115, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^4 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{6} \int \cos ^4(c+d x) (6 A+5 C+6 B \cos (c+d x))dx+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \int \sin \left (c+d x+\frac {\pi }{2}\right )^4 \left (6 A+5 C+6 B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \int \cos ^4(c+d x)dx+6 B \int \cos ^5(c+d x)dx\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx+6 B \int \sin \left (c+d x+\frac {\pi }{2}\right )^5dx\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 3113

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx-\frac {6 B \int \left (\sin ^4(c+d x)-2 \sin ^2(c+d x)+1\right )d(-\sin (c+d x))}{d}\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx-\frac {6 B \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \left (\frac {3}{4} \int \cos ^2(c+d x)dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {6 B \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \left (\frac {3}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {6 B \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \left (\frac {3}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {6 B \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {1}{6} \left ((6 A+5 C) \left (\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac {3}{4} \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )\right )-\frac {6 B \left (-\frac {1}{5} \sin ^5(c+d x)+\frac {2}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}\right )+\frac {C \sin (c+d x) \cos ^5(c+d x)}{6 d}\)

Input:

Int[Cos[c + d*x]^4*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2),x]
 

Output:

(C*Cos[c + d*x]^5*Sin[c + d*x])/(6*d) + ((-6*B*(-Sin[c + d*x] + (2*Sin[c + 
 d*x]^3)/3 - Sin[c + d*x]^5/5))/d + (6*A + 5*C)*((Cos[c + d*x]^3*Sin[c + d 
*x])/(4*d) + (3*(x/2 + (Cos[c + d*x]*Sin[c + d*x])/(2*d)))/4))/6
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3113
Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
and[(1 - x^2)^((n - 1)/2), x], x], x, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] 
 && IGtQ[(n - 1)/2, 0]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [A] (verified)

Time = 9.36 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.72

method result size
parallelrisch \(\frac {\left (240 A +225 C \right ) \sin \left (2 d x +2 c \right )+\left (30 A +45 C \right ) \sin \left (4 d x +4 c \right )+100 B \sin \left (3 d x +3 c \right )+12 B \sin \left (5 d x +5 c \right )+5 \sin \left (6 d x +6 c \right ) C +600 B \sin \left (d x +c \right )+360 x \left (A +\frac {5 C}{6}\right ) d}{960 d}\) \(95\)
derivativedivides \(\frac {C \left (\frac {\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+\frac {B \left (\frac {8}{3}+\cos \left (d x +c \right )^{4}+\frac {4 \cos \left (d x +c \right )^{2}}{3}\right ) \sin \left (d x +c \right )}{5}+A \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d}\) \(115\)
default \(\frac {C \left (\frac {\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+\frac {B \left (\frac {8}{3}+\cos \left (d x +c \right )^{4}+\frac {4 \cos \left (d x +c \right )^{2}}{3}\right ) \sin \left (d x +c \right )}{5}+A \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d}\) \(115\)
parts \(\frac {A \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d}+\frac {B \left (\frac {8}{3}+\cos \left (d x +c \right )^{4}+\frac {4 \cos \left (d x +c \right )^{2}}{3}\right ) \sin \left (d x +c \right )}{5 d}+\frac {C \left (\frac {\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )}{d}\) \(120\)
risch \(\frac {3 x A}{8}+\frac {5 C x}{16}+\frac {5 B \sin \left (d x +c \right )}{8 d}+\frac {C \sin \left (6 d x +6 c \right )}{192 d}+\frac {B \sin \left (5 d x +5 c \right )}{80 d}+\frac {\sin \left (4 d x +4 c \right ) A}{32 d}+\frac {3 \sin \left (4 d x +4 c \right ) C}{64 d}+\frac {5 B \sin \left (3 d x +3 c \right )}{48 d}+\frac {\sin \left (2 d x +2 c \right ) A}{4 d}+\frac {15 \sin \left (2 d x +2 c \right ) C}{64 d}\) \(127\)
norman \(\frac {\left (\frac {3 A}{8}+\frac {5 C}{16}\right ) x +\left (\frac {3 A}{8}+\frac {5 C}{16}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}+\left (\frac {9 A}{4}+\frac {15 C}{8}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (\frac {9 A}{4}+\frac {15 C}{8}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (\frac {15 A}{2}+\frac {25 C}{4}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (\frac {45 A}{8}+\frac {75 C}{16}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (\frac {45 A}{8}+\frac {75 C}{16}\right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-\frac {\left (10 A -208 B +75 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{20 d}-\frac {\left (10 A -16 B +11 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{8 d}+\frac {\left (10 A +16 B +11 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}+\frac {\left (10 A +208 B +75 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{20 d}-\frac {\left (42 A -112 B -5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{24 d}+\frac {\left (42 A +112 B -5 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{24 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{6}}\) \(301\)
orering \(\text {Expression too large to display}\) \(8957\)

Input:

int(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x,method=_RETURNVERBOSE)
 

Output:

1/960*((240*A+225*C)*sin(2*d*x+2*c)+(30*A+45*C)*sin(4*d*x+4*c)+100*B*sin(3 
*d*x+3*c)+12*B*sin(5*d*x+5*c)+5*sin(6*d*x+6*c)*C+600*B*sin(d*x+c)+360*x*(A 
+5/6*C)*d)/d
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.70 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {15 \, {\left (6 \, A + 5 \, C\right )} d x + {\left (40 \, C \cos \left (d x + c\right )^{5} + 48 \, B \cos \left (d x + c\right )^{4} + 10 \, {\left (6 \, A + 5 \, C\right )} \cos \left (d x + c\right )^{3} + 64 \, B \cos \left (d x + c\right )^{2} + 15 \, {\left (6 \, A + 5 \, C\right )} \cos \left (d x + c\right ) + 128 \, B\right )} \sin \left (d x + c\right )}{240 \, d} \] Input:

integrate(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="frica 
s")
 

Output:

1/240*(15*(6*A + 5*C)*d*x + (40*C*cos(d*x + c)^5 + 48*B*cos(d*x + c)^4 + 1 
0*(6*A + 5*C)*cos(d*x + c)^3 + 64*B*cos(d*x + c)^2 + 15*(6*A + 5*C)*cos(d* 
x + c) + 128*B)*sin(d*x + c))/d
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 321 vs. \(2 (121) = 242\).

Time = 0.34 (sec) , antiderivative size = 321, normalized size of antiderivative = 2.43 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\begin {cases} \frac {3 A x \sin ^{4}{\left (c + d x \right )}}{8} + \frac {3 A x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac {3 A x \cos ^{4}{\left (c + d x \right )}}{8} + \frac {3 A \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8 d} + \frac {5 A \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} + \frac {8 B \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {4 B \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {B \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {5 C x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {15 C x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {15 C x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {5 C x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {5 C \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} + \frac {5 C \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} + \frac {11 C \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} & \text {for}\: d \neq 0 \\x \left (A + B \cos {\left (c \right )} + C \cos ^{2}{\left (c \right )}\right ) \cos ^{4}{\left (c \right )} & \text {otherwise} \end {cases} \] Input:

integrate(cos(d*x+c)**4*(A+B*cos(d*x+c)+C*cos(d*x+c)**2),x)
 

Output:

Piecewise((3*A*x*sin(c + d*x)**4/8 + 3*A*x*sin(c + d*x)**2*cos(c + d*x)**2 
/4 + 3*A*x*cos(c + d*x)**4/8 + 3*A*sin(c + d*x)**3*cos(c + d*x)/(8*d) + 5* 
A*sin(c + d*x)*cos(c + d*x)**3/(8*d) + 8*B*sin(c + d*x)**5/(15*d) + 4*B*si 
n(c + d*x)**3*cos(c + d*x)**2/(3*d) + B*sin(c + d*x)*cos(c + d*x)**4/d + 5 
*C*x*sin(c + d*x)**6/16 + 15*C*x*sin(c + d*x)**4*cos(c + d*x)**2/16 + 15*C 
*x*sin(c + d*x)**2*cos(c + d*x)**4/16 + 5*C*x*cos(c + d*x)**6/16 + 5*C*sin 
(c + d*x)**5*cos(c + d*x)/(16*d) + 5*C*sin(c + d*x)**3*cos(c + d*x)**3/(6* 
d) + 11*C*sin(c + d*x)*cos(c + d*x)**5/(16*d), Ne(d, 0)), (x*(A + B*cos(c) 
 + C*cos(c)**2)*cos(c)**4, True))
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.87 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {30 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} A + 64 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} B - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} C}{960 \, d} \] Input:

integrate(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="maxim 
a")
 

Output:

1/960*(30*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*A + 64*( 
3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*x + c))*B - 5*(4*sin(2*d*x 
 + 2*c)^3 - 60*d*x - 60*c - 9*sin(4*d*x + 4*c) - 48*sin(2*d*x + 2*c))*C)/d
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.83 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {1}{16} \, {\left (6 \, A + 5 \, C\right )} x + \frac {C \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} + \frac {B \sin \left (5 \, d x + 5 \, c\right )}{80 \, d} + \frac {{\left (2 \, A + 3 \, C\right )} \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} + \frac {5 \, B \sin \left (3 \, d x + 3 \, c\right )}{48 \, d} + \frac {{\left (16 \, A + 15 \, C\right )} \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} + \frac {5 \, B \sin \left (d x + c\right )}{8 \, d} \] Input:

integrate(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, algorithm="giac" 
)
 

Output:

1/16*(6*A + 5*C)*x + 1/192*C*sin(6*d*x + 6*c)/d + 1/80*B*sin(5*d*x + 5*c)/ 
d + 1/64*(2*A + 3*C)*sin(4*d*x + 4*c)/d + 5/48*B*sin(3*d*x + 3*c)/d + 1/64 
*(16*A + 15*C)*sin(2*d*x + 2*c)/d + 5/8*B*sin(d*x + c)/d
 

Mupad [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.95 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {3\,A\,x}{8}+\frac {5\,C\,x}{16}+\frac {A\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {A\,\sin \left (4\,c+4\,d\,x\right )}{32\,d}+\frac {5\,B\,\sin \left (3\,c+3\,d\,x\right )}{48\,d}+\frac {B\,\sin \left (5\,c+5\,d\,x\right )}{80\,d}+\frac {15\,C\,\sin \left (2\,c+2\,d\,x\right )}{64\,d}+\frac {3\,C\,\sin \left (4\,c+4\,d\,x\right )}{64\,d}+\frac {C\,\sin \left (6\,c+6\,d\,x\right )}{192\,d}+\frac {5\,B\,\sin \left (c+d\,x\right )}{8\,d} \] Input:

int(cos(c + d*x)^4*(A + B*cos(c + d*x) + C*cos(c + d*x)^2),x)
 

Output:

(3*A*x)/8 + (5*C*x)/16 + (A*sin(2*c + 2*d*x))/(4*d) + (A*sin(4*c + 4*d*x)) 
/(32*d) + (5*B*sin(3*c + 3*d*x))/(48*d) + (B*sin(5*c + 5*d*x))/(80*d) + (1 
5*C*sin(2*c + 2*d*x))/(64*d) + (3*C*sin(4*c + 4*d*x))/(64*d) + (C*sin(6*c 
+ 6*d*x))/(192*d) + (5*B*sin(c + d*x))/(8*d)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.97 \[ \int \cos ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {40 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5} c -60 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a -130 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} c +150 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a +165 \cos \left (d x +c \right ) \sin \left (d x +c \right ) c +48 \sin \left (d x +c \right )^{5} b -160 \sin \left (d x +c \right )^{3} b +240 \sin \left (d x +c \right ) b +90 a d x +75 c d x}{240 d} \] Input:

int(cos(d*x+c)^4*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x)
 

Output:

(40*cos(c + d*x)*sin(c + d*x)**5*c - 60*cos(c + d*x)*sin(c + d*x)**3*a - 1 
30*cos(c + d*x)*sin(c + d*x)**3*c + 150*cos(c + d*x)*sin(c + d*x)*a + 165* 
cos(c + d*x)*sin(c + d*x)*c + 48*sin(c + d*x)**5*b - 160*sin(c + d*x)**3*b 
 + 240*sin(c + d*x)*b + 90*a*d*x + 75*c*d*x)/(240*d)