\(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [387]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 159 \[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a^{3/2} (7 A+12 B+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}-\frac {a^2 (5 A+4 B-8 C) \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a (3 A+4 B) \sqrt {a+a \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{2 d} \] Output:

1/4*a^(3/2)*(7*A+12*B+8*C)*arctanh(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/ 
2))/d-1/4*a^2*(5*A+4*B-8*C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/4*a*(3*A 
+4*B)*(a+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d+1/2*A*(a+a*cos(d*x+c))^(3/2)*sec 
(d*x+c)*tan(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.86 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.80 \[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \left (\sqrt {2} (7 A+12 B+8 C) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^2(c+d x)+2 ((7 A+4 B) \cos (c+d x)+2 (A+2 C+2 C \cos (2 (c+d x)))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^ 
2)*Sec[c + d*x]^3,x]
 

Output:

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^2*(Sqrt[2]*(7* 
A + 12*B + 8*C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^2 + 2*((7*A 
 + 4*B)*Cos[c + d*x] + 2*(A + 2*C + 2*C*Cos[2*(c + d*x)]))*Sin[(c + d*x)/2 
]))/(8*d)
 

Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.05, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.256, Rules used = {3042, 3522, 27, 3042, 3454, 27, 3042, 3460, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a \cos (c+d x)+a)^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {\int \frac {1}{2} (\cos (c+d x) a+a)^{3/2} (a (3 A+4 B)-a (A-4 C) \cos (c+d x)) \sec ^2(c+d x)dx}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^{3/2} (a (3 A+4 B)-a (A-4 C) \cos (c+d x)) \sec ^2(c+d x)dx}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a (3 A+4 B)-a (A-4 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\int \frac {1}{2} \sqrt {\cos (c+d x) a+a} \left (a^2 (7 A+12 B+8 C)-a^2 (5 A+4 B-8 C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {a^2 (3 A+4 B) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{2} \int \sqrt {\cos (c+d x) a+a} \left (a^2 (7 A+12 B+8 C)-a^2 (5 A+4 B-8 C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {a^2 (3 A+4 B) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a^2 (7 A+12 B+8 C)-a^2 (5 A+4 B-8 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a^2 (3 A+4 B) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {\frac {1}{2} \left (a^2 (7 A+12 B+8 C) \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-\frac {2 a^3 (5 A+4 B-8 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 (3 A+4 B) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} \left (a^2 (7 A+12 B+8 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a^3 (5 A+4 B-8 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 (3 A+4 B) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\frac {1}{2} \left (-\frac {2 a^3 (7 A+12 B+8 C) \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {2 a^3 (5 A+4 B-8 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 (3 A+4 B) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {a^2 (3 A+4 B) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}+\frac {1}{2} \left (\frac {2 a^{5/2} (7 A+12 B+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {2 a^3 (5 A+4 B-8 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )}{4 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}\)

Input:

Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec 
[c + d*x]^3,x]
 

Output:

(A*(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (((2*a^(5 
/2)*(7*A + 12*B + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d 
*x]]])/d - (2*a^3*(5*A + 4*B - 8*C)*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d* 
x]]))/2 + (a^2*(3*A + 4*B)*Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/d)/(4*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1153\) vs. \(2(139)=278\).

Time = 0.91 (sec) , antiderivative size = 1154, normalized size of antiderivative = 7.26

method result size
parts \(\text {Expression too large to display}\) \(1154\)
default \(\text {Expression too large to display}\) \(1471\)

Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, 
method=_RETURNVERBOSE)
 

Output:

1/2*A*a^(1/2)*cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(28*a*(ln( 
-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^ 
(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1 
/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a 
)^(1/2)+2*a)))*sin(1/2*d*x+1/2*c)^4+(-28*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2* 
c)^2*a)^(1/2)-28*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d 
*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a-28*ln(4/( 
2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2 
)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a)*sin(1/2*d*x+1/2*c)^2+18*a^(1/2)* 
2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+7*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/ 
2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a) 
^(1/2)-2*a))*a+7*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d* 
x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a)/(2*cos(1/ 
2*d*x+1/2*c)-2^(1/2))^2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^2/sin(1/2*d*x+1/2*c 
)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+B*a^(1/2)*cos(1/2*d*x+1/2*c)*(sin(1/2*d 
*x+1/2*c)^2*a)^(1/2)*(-6*a*(ln(-2/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2 
)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))+ 
ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)* 
2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a)))*sin(1/2*d*x+1/2*c)^2+2*a^(1/ 
2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+3*ln(-2/(2*cos(1/2*d*x+1/2*c)...
 

Fricas [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.26 \[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {{\left ({\left (7 \, A + 12 \, B + 8 \, C\right )} a \cos \left (d x + c\right )^{3} + {\left (7 \, A + 12 \, B + 8 \, C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (8 \, C a \cos \left (d x + c\right )^{2} + {\left (7 \, A + 4 \, B\right )} a \cos \left (d x + c\right ) + 2 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^3,x, algorithm="fricas")
 

Output:

1/16*(((7*A + 12*B + 8*C)*a*cos(d*x + c)^3 + (7*A + 12*B + 8*C)*a*cos(d*x 
+ c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos( 
d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c) 
^3 + cos(d*x + c)^2)) + 4*(8*C*a*cos(d*x + c)^2 + (7*A + 4*B)*a*cos(d*x + 
c) + 2*A*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^3 + d*c 
os(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x 
+c)**3,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3339 vs. \(2 (139) = 278\).

Time = 0.38 (sec) , antiderivative size = 3339, normalized size of antiderivative = 21.00 \[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^3,x, algorithm="maxima")
 

Output:

-1/16*((12*a*cos(4*d*x + 4*c)^2*sin(3/2*d*x + 3/2*c) + 48*a*cos(2*d*x + 2* 
c)^2*sin(3/2*d*x + 3/2*c) + 12*a*sin(4*d*x + 4*c)^2*sin(3/2*d*x + 3/2*c) + 
 48*a*sin(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 160*a*cos(7/2*d*x + 7/2*c) 
*sin(2*d*x + 2*c) + 168*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 72*a*cos 
(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - 24*a*cos(2*d*x + 2*c)*sin(3/2*d*x + 3 
/2*c) - 4*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(13/2*d*x + 13/2* 
c) + 12*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(11/2*d*x + 11/2*c) 
 + 48*(a*sin(4*d*x + 4*c) + 2*a*sin(2*d*x + 2*c))*cos(9/2*d*x + 9/2*c) + 4 
*(12*a*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - 20*a*sin(7/2*d*x + 7/2*c) - 
 21*a*sin(5/2*d*x + 5/2*c) - 3*a*sin(3/2*d*x + 3/2*c))*cos(4*d*x + 4*c) - 
7*(sqrt(2)*a*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2) 
*a*sin(4*d*x + 4*c)^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4* 
sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c) + 2*(2*sqrt(2) 
*a*cos(2*d*x + 2*c) + sqrt(2)*a)*cos(4*d*x + 4*c) + sqrt(2)*a)*log(2*cos(1 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arc 
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(sqrt(2)*a*cos(4 
*d*x + 4*c)^2 + 4*sqrt(2)*a*cos(2*d*x + 2*c)^2 + sqrt(2)*a*sin(4*d*x + 4*c 
)^2 + 4*sqrt(2)*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*a*sin(2...
 

Giac [A] (verification not implemented)

Time = 0.49 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.50 \[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {\sqrt {2} {\left (32 \, C a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {2} {\left (7 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 12 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 8 \, C a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) - \frac {4 \, {\left (14 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 8 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{16 \, d} \] Input:

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c 
)^3,x, algorithm="giac")
 

Output:

1/16*sqrt(2)*(32*C*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) - sqrt 
(2)*(7*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 12*B*a*sgn(cos(1/2*d*x + 1/2*c)) + 
8*C*a*sgn(cos(1/2*d*x + 1/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2* 
c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))) - 4*(14*A*a*sgn(cos(1/2*d*x + 
 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 8*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2* 
d*x + 1/2*c)^3 - 9*A*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) - 4* 
B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c 
)^2 - 1)^2)*sqrt(a)/d
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^3} \,d x \] Input:

int(((a + a*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^3,x)
 

Output:

int(((a + a*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^3, x)
 

Reduce [F]

\[ \int (a+a \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}d x \right ) a \right ) \] Input:

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3,x)
 

Output:

sqrt(a)*a*(int(sqrt(cos(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)**3,x)*a + 
int(sqrt(cos(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)**3,x)*b + int(sqrt(co 
s(c + d*x) + 1)*cos(c + d*x)**3*sec(c + d*x)**3,x)*c + int(sqrt(cos(c + d* 
x) + 1)*cos(c + d*x)**2*sec(c + d*x)**3,x)*b + int(sqrt(cos(c + d*x) + 1)* 
cos(c + d*x)**2*sec(c + d*x)**3,x)*c + int(sqrt(cos(c + d*x) + 1)*sec(c + 
d*x)**3,x)*a)