\(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \, dx\) [433]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 144 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {2 a (5 A+3 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (7 A+7 B+5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a (7 A+7 B+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a (B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a C \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \] Output:

2/5*a*(5*A+3*B+3*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/21*a*(7*A+7* 
B+5*C)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/21*a*(7*A+7*B+5*C)*cos(d 
*x+c)^(1/2)*sin(d*x+c)/d+2/5*a*(B+C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*a*C 
*cos(d*x+c)^(5/2)*sin(d*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.97 (sec) , antiderivative size = 1240, normalized size of antiderivative = 8.61 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C* 
Cos[c + d*x]^2),x]
 

Output:

a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(-1/5*((5*A 
+ 3*B + 3*C)*Cot[c])/d + ((28*A + 28*B + 23*C)*Cos[d*x]*Sin[c])/(84*d) + ( 
(B + C)*Cos[2*d*x]*Sin[2*c])/(10*d) + (C*Cos[3*d*x]*Sin[3*c])/(28*d) + ((2 
8*A + 28*B + 23*C)*Cos[c]*Sin[d*x])/(84*d) + ((B + C)*Cos[2*c]*Sin[2*d*x]) 
/(10*d) + (C*Cos[3*c]*Sin[3*d*x])/(28*d)) - (A*(1 + Cos[c + d*x])*Csc[c]*H 
ypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + 
 (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]* 
Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[ 
d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (B*(1 + Cos[c + d*x])*C 
sc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Se 
c[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot 
[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 
 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (5*C*(1 + Cos[c 
+ d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c 
]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - A 
rcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]] 
)]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*d*Sqrt[1 + Cot[c]^2]) - (A*(1 
+ Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -1/ 
4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/ 
(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]...
 

Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.317, Rules used = {3042, 3512, 27, 3042, 3502, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \cos (c+d x)+a) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3512

\(\displaystyle \frac {2}{7} \int \frac {1}{2} \sqrt {\cos (c+d x)} \left (7 a (B+C) \cos ^2(c+d x)+a (7 A+7 B+5 C) \cos (c+d x)+7 a A\right )dx+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \sqrt {\cos (c+d x)} \left (7 a (B+C) \cos ^2(c+d x)+a (7 A+7 B+5 C) \cos (c+d x)+7 a A\right )dx+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (7 a (B+C) \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (7 A+7 B+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )+7 a A\right )dx+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{7} \left (\frac {2}{5} \int \frac {1}{2} \sqrt {\cos (c+d x)} (7 a (5 A+3 (B+C))+5 a (7 A+7 B+5 C) \cos (c+d x))dx+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \sqrt {\cos (c+d x)} (7 a (5 A+3 (B+C))+5 a (7 A+7 B+5 C) \cos (c+d x))dx+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (7 a (5 A+3 (B+C))+5 a (7 A+7 B+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \int \cos ^{\frac {3}{2}}(c+d x)dx+7 a (5 A+3 (B+C)) \int \sqrt {\cos (c+d x)}dx\right )+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (7 a (5 A+3 (B+C)) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+5 a (7 A+7 B+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx\right )+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (7 a (5 A+3 (B+C)) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+5 a (7 A+7 B+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (7 a (5 A+3 (B+C)) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+5 a (7 A+7 B+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (5 a (7 A+7 B+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {14 a (5 A+3 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} \left (\frac {14 a (5 A+3 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+5 a (7 A+7 B+5 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )+\frac {14 a (B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )+\frac {2 a C \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{7 d}\)

Input:

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c 
+ d*x]^2),x]
 

Output:

(2*a*C*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(7*d) + ((14*a*(B + C)*Cos[c + d*x 
]^(3/2)*Sin[c + d*x])/(5*d) + ((14*a*(5*A + 3*(B + C))*EllipticE[(c + d*x) 
/2, 2])/d + 5*a*(7*A + 7*B + 5*C)*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + ( 
2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/5)/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3512
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Si 
n[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Simp[1/(b*(m + 3))   Int[(a + b*Si 
n[e + f*x])^m*Simp[a*C*d + A*b*c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + 
A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e + f*x]^2 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 
0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(480\) vs. \(2(132)=264\).

Time = 17.22 (sec) , antiderivative size = 481, normalized size of antiderivative = 3.34

method result size
default \(-\frac {2 \sqrt {\left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (240 C \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-168 B -528 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (140 A +308 B +448 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-70 A -112 B -122 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+35 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+35 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(481\)
parts \(\text {Expression too large to display}\) \(729\)

Input:

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x,me 
thod=_RETURNVERBOSE)
 

Output:

-2/105*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(240*C*s 
in(1/2*d*x+1/2*c)^8*cos(1/2*d*x+1/2*c)+(-168*B-528*C)*sin(1/2*d*x+1/2*c)^6 
*cos(1/2*d*x+1/2*c)+(140*A+308*B+448*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1 
/2*c)+(-70*A-112*B-122*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+35*A*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1 
/2*d*x+1/2*c),2^(1/2))-105*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+35*B*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2* 
c),2^(1/2))-63*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*C*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))- 
63*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c 
)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.40 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {-5 i \, \sqrt {2} {\left (7 \, A + 7 \, B + 5 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (7 \, A + 7 \, B + 5 \, C\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (5 \, A + 3 \, B + 3 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (5 \, A + 3 \, B + 3 \, C\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (15 \, C a \cos \left (d x + c\right )^{2} + 21 \, {\left (B + C\right )} a \cos \left (d x + c\right ) + 5 \, {\left (7 \, A + 7 \, B + 5 \, C\right )} a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2 
),x, algorithm="fricas")
 

Output:

1/105*(-5*I*sqrt(2)*(7*A + 7*B + 5*C)*a*weierstrassPInverse(-4, 0, cos(d*x 
 + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*(7*A + 7*B + 5*C)*a*weierstrassPInve 
rse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*I*sqrt(2)*(5*A + 3*B + 3*C) 
*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c))) - 21*I*sqrt(2)*(5*A + 3*B + 3*C)*a*weierstrassZeta(-4, 0, weier 
strassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(15*C*a*cos(d*x 
+ c)^2 + 21*(B + C)*a*cos(d*x + c) + 5*(7*A + 7*B + 5*C)*a)*sqrt(cos(d*x + 
 c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)* 
*2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2 
),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqr 
t(cos(d*x + c)), x)
 

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2 
),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sqr 
t(cos(d*x + c)), x)
 

Mupad [B] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.50 \[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {2\,A\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,B\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,B\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c 
+ d*x)^2),x)
 

Output:

(2*A*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) + (2*B*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2 
)))/(3*d) + (2*A*a*ellipticE(c/2 + (d*x)/2, 2))/d - (2*B*a*cos(c + d*x)^(7 
/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c 
+ d*x)^2)^(1/2)) - (2*C*a*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 
7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (2*C*a*cos(c + 
 d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d 
*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=a \left (\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) c \right ) \] Input:

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x)
 

Output:

a*(int(sqrt(cos(c + d*x)),x)*a + int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a 
+ int(sqrt(cos(c + d*x))*cos(c + d*x),x)*b + int(sqrt(cos(c + d*x))*cos(c 
+ d*x)**3,x)*c + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*b + int(sqrt(co 
s(c + d*x))*cos(c + d*x)**2,x)*c)