\(\int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [450]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 229 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 a^3 (5 A+9 B+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 (35 A+21 B+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {4 a^3 (35 A-42 B-41 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{105 d}+\frac {2 A (a+a \cos (c+d x))^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 (7 A-C) \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{7 a d}-\frac {2 (35 A-7 B-11 C) \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{35 d} \] Output:

4/5*a^3*(5*A+9*B+7*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/21*a^3*(35 
*A+21*B+13*C)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d-4/105*a^3*(35*A-42* 
B-41*C)*cos(d*x+c)^(1/2)*sin(d*x+c)/d+2*A*(a+a*cos(d*x+c))^3*sin(d*x+c)/d/ 
cos(d*x+c)^(1/2)-2/7*(7*A-C)*cos(d*x+c)^(1/2)*(a^2+a^2*cos(d*x+c))^2*sin(d 
*x+c)/a/d-2/35*(35*A-7*B-11*C)*cos(d*x+c)^(1/2)*(a^3+a^3*cos(d*x+c))*sin(d 
*x+c)/d
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.05 (sec) , antiderivative size = 1313, normalized size of antiderivative = 5.73 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[((a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)) 
/Cos[c + d*x]^(3/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(-1/40*((5* 
A + 18*B + 14*C + 15*A*Cos[2*c] + 18*B*Cos[2*c] + 14*C*Cos[2*c])*Csc[c]*Se 
c[c])/d + ((28*A + 84*B + 107*C)*Cos[d*x]*Sin[c])/(336*d) + ((B + 3*C)*Cos 
[2*d*x]*Sin[2*c])/(40*d) + (C*Cos[3*d*x]*Sin[3*c])/(112*d) + ((28*A + 84*B 
 + 107*C)*Cos[c]*Sin[d*x])/(336*d) + (A*Sec[c]*Sec[c + d*x]*Sin[d*x])/(4*d 
) + ((B + 3*C)*Cos[2*c]*Sin[2*d*x])/(40*d) + (C*Cos[3*c]*Sin[3*d*x])/(112* 
d)) - (5*A*(a + a*Cos[c + d*x])^3*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/ 
4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot 
[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c] 
*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(6*d*Sqr 
t[1 + Cot[c]^2]) - (B*(a + a*Cos[c + d*x])^3*Csc[c]*HypergeometricPFQ[{1/4 
, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - 
 ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c 
]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]] 
])/(2*d*Sqrt[1 + Cot[c]^2]) - (13*C*(a + a*Cos[c + d*x])^3*Csc[c]*Hypergeo 
metricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/ 
2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-( 
Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - A 
rcTan[Cot[c]]]])/(42*d*Sqrt[1 + Cot[c]^2]) - (A*(a + a*Cos[c + d*x])^3*Csc 
[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d...
 

Rubi [A] (verified)

Time = 1.63 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.06, number of steps used = 18, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.419, Rules used = {3042, 3522, 27, 3042, 3455, 27, 3042, 3455, 3042, 3447, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^3 (a (6 A+B)-a (7 A-C) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^3 (a (6 A+B)-a (7 A-C) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3 \left (a (6 A+B)-a (7 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {2}{7} \int \frac {(\cos (c+d x) a+a)^2 \left (a^2 (35 A+7 B+C)-a^2 (35 A-7 B-11 C) \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x)}}dx-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{7} \int \frac {(\cos (c+d x) a+a)^2 \left (a^2 (35 A+7 B+C)-a^2 (35 A-7 B-11 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}}dx-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{7} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (a^2 (35 A+7 B+C)-a^2 (35 A-7 B-11 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \int \frac {(\cos (c+d x) a+a) \left (a^3 (70 A+21 B+8 C)-a^3 (35 A-42 B-41 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}}dx-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a^3 (70 A+21 B+8 C)-a^3 (35 A-42 B-41 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \int \frac {-\left ((35 A-42 B-41 C) \cos ^2(c+d x) a^4\right )+(70 A+21 B+8 C) a^4+\left (a^4 (70 A+21 B+8 C)-a^4 (35 A-42 B-41 C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \int \frac {-\left ((35 A-42 B-41 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^4\right )+(70 A+21 B+8 C) a^4+\left (a^4 (70 A+21 B+8 C)-a^4 (35 A-42 B-41 C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \left (\frac {2}{3} \int \frac {5 (35 A+21 B+13 C) a^4+21 (5 A+9 B+7 C) \cos (c+d x) a^4}{2 \sqrt {\cos (c+d x)}}dx-\frac {2 a^4 (35 A-42 B-41 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \left (\frac {1}{3} \int \frac {5 (35 A+21 B+13 C) a^4+21 (5 A+9 B+7 C) \cos (c+d x) a^4}{\sqrt {\cos (c+d x)}}dx-\frac {2 a^4 (35 A-42 B-41 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \left (\frac {1}{3} \int \frac {5 (35 A+21 B+13 C) a^4+21 (5 A+9 B+7 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^4}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 a^4 (35 A-42 B-41 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \left (\frac {1}{3} \left (5 a^4 (35 A+21 B+13 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+21 a^4 (5 A+9 B+7 C) \int \sqrt {\cos (c+d x)}dx\right )-\frac {2 a^4 (35 A-42 B-41 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \left (\frac {1}{3} \left (5 a^4 (35 A+21 B+13 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+21 a^4 (5 A+9 B+7 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-\frac {2 a^4 (35 A-42 B-41 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \left (\frac {1}{3} \left (5 a^4 (35 A+21 B+13 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {42 a^4 (5 A+9 B+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^4 (35 A-42 B-41 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {1}{7} \left (\frac {2}{5} \left (\frac {1}{3} \left (\frac {10 a^4 (35 A+21 B+13 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {42 a^4 (5 A+9 B+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {2 a^4 (35 A-42 B-41 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-\frac {2 (35 A-7 B-11 C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^4 \cos (c+d x)+a^4\right )}{5 d}\right )-\frac {2 (7 A-C) \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )^2}{7 d}}{a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^3}{d \sqrt {\cos (c+d x)}}\)

Input:

Int[((a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c 
 + d*x]^(3/2),x]
 

Output:

(2*A*(a + a*Cos[c + d*x])^3*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + ((-2*(7 
*A - C)*Sqrt[Cos[c + d*x]]*(a^2 + a^2*Cos[c + d*x])^2*Sin[c + d*x])/(7*d) 
+ ((-2*(35*A - 7*B - 11*C)*Sqrt[Cos[c + d*x]]*(a^4 + a^4*Cos[c + d*x])*Sin 
[c + d*x])/(5*d) + (2*(((42*a^4*(5*A + 9*B + 7*C)*EllipticE[(c + d*x)/2, 2 
])/d + (10*a^4*(35*A + 21*B + 13*C)*EllipticF[(c + d*x)/2, 2])/d)/3 - (2*a 
^4*(35*A - 42*B - 41*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)))/5)/7)/a
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(726\) vs. \(2(214)=428\).

Time = 19.13 (sec) , antiderivative size = 727, normalized size of antiderivative = 3.17

method result size
default \(\text {Expression too large to display}\) \(727\)
parts \(\text {Expression too large to display}\) \(977\)

Input:

int((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, 
method=_RETURNVERBOSE)
 

Output:

-4/105*a^3*(120*C*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos 
(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-12*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(7*B+36*C)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+14*( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(5*A+21*B+43*C)*sin(1/ 
2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(70*A+63*B+104*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+1 
75*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti 
cF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c) 
^2)^(1/2)-105*A*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2 
*d*x+1/2*c),2^(1/2))+105*B*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))-189*B*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+65*C*(-2*sin(1/2*d*x+1/2*c)^4+s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2 
*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*C*(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*co...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.15 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (35 \, A + 21 \, B + 13 \, C\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (35 \, A + 21 \, B + 13 \, C\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} {\left (5 \, A + 9 \, B + 7 \, C\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} {\left (5 \, A + 9 \, B + 7 \, C\right )} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (15 \, C a^{3} \cos \left (d x + c\right )^{3} + 21 \, {\left (B + 3 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 5 \, {\left (7 \, A + 21 \, B + 26 \, C\right )} a^{3} \cos \left (d x + c\right ) + 105 \, A a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d \cos \left (d x + c\right )} \] Input:

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3 
/2),x, algorithm="fricas")
 

Output:

-2/105*(5*I*sqrt(2)*(35*A + 21*B + 13*C)*a^3*cos(d*x + c)*weierstrassPInve 
rse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*(35*A + 21*B + 13* 
C)*a^3*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + 
c)) - 21*I*sqrt(2)*(5*A + 9*B + 7*C)*a^3*cos(d*x + c)*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt( 
2)*(5*A + 9*B + 7*C)*a^3*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPI 
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15*C*a^3*cos(d*x + c)^3 + 
 21*(B + 3*C)*a^3*cos(d*x + c)^2 + 5*(7*A + 21*B + 26*C)*a^3*cos(d*x + c) 
+ 105*A*a^3)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**3*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)* 
*(3/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3 
/2),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3/c 
os(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3 
/2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3/c 
os(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 0.94 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.64 \[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,\left (C\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+C\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+C\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}+\frac {A\,a^3\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {6\,A\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,B\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,B\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}+\frac {2\,A\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,B\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {6\,C\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,C\,a^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(((a + a*cos(c + d*x))^3*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c 
 + d*x)^(3/2),x)
 

Output:

(2*(C*a^3*ellipticE(c/2 + (d*x)/2, 2) + C*a^3*ellipticF(c/2 + (d*x)/2, 2) 
+ C*a^3*cos(c + d*x)^(1/2)*sin(c + d*x)))/d + (A*a^3*((2*cos(c + d*x)^(1/2 
)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (6*A*a^3*ellip 
ticE(c/2 + (d*x)/2, 2))/d + (6*A*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*B 
*a^3*ellipticE(c/2 + (d*x)/2, 2))/d + (4*B*a^3*ellipticF(c/2 + (d*x)/2, 2) 
)/d + (2*B*a^3*cos(c + d*x)^(1/2)*sin(c + d*x))/d + (2*A*a^3*sin(c + d*x)* 
hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c 
+ d*x)^2)^(1/2)) - (2*B*a^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2 
, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2)) - (6*C*a^3*cos 
(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/ 
(7*d*(sin(c + d*x)^2)^(1/2)) - (2*C*a^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hy 
pergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=a^{3} \left (3 \left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +3 \left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) a +3 \left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a +3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) b +3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) b +3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) c \right ) \] Input:

int((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x)
 

Output:

a**3*(3*int(sqrt(cos(c + d*x))/cos(c + d*x),x)*a + int(sqrt(cos(c + d*x))/ 
cos(c + d*x),x)*b + int(sqrt(cos(c + d*x))/cos(c + d*x)**2,x)*a + 3*int(sq 
rt(cos(c + d*x)),x)*a + 3*int(sqrt(cos(c + d*x)),x)*b + int(sqrt(cos(c + d 
*x)),x)*c + int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a + 3*int(sqrt(cos(c + 
d*x))*cos(c + d*x),x)*b + 3*int(sqrt(cos(c + d*x))*cos(c + d*x),x)*c + int 
(sqrt(cos(c + d*x))*cos(c + d*x)**3,x)*c + int(sqrt(cos(c + d*x))*cos(c + 
d*x)**2,x)*b + 3*int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*c)