\(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^3} \, dx\) [472]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 191 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx=\frac {(A-B-9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {(A+B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {(A-B+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {(4 A+B-6 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(A-B-9 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

1/10*(A-B-9*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*(A+B+3*C)*I 
nverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^3/d-1/5*(A-B+C)*cos(d*x+c)^(3/2)*s 
in(d*x+c)/d/(a+a*cos(d*x+c))^3+1/15*(4*A+B-6*C)*cos(d*x+c)^(1/2)*sin(d*x+c 
)/a/d/(a+a*cos(d*x+c))^2-1/10*(A-B-9*C)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a^3 
+a^3*cos(d*x+c))
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.65 (sec) , antiderivative size = 1445, normalized size of antiderivative = 7.57 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx =\text {Too large to display} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a 
+ a*Cos[c + d*x])^3,x]
 

Output:

(-2*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Si 
n[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan 
[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x]) 
^3*Sqrt[1 + Cot[c]^2]) - (2*B*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Hypergeometric 
PFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*(a + a*Cos[c + d*x])^3*Sqrt[1 + Cot[c]^2]) - (2*C*Cos[c/2 + (d*x)/2]^6 
*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2 
]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*S 
qrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d 
*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])^3*Sqrt[1 + Cot[c]^2]) + (Co 
s[c/2 + (d*x)/2]^6*Sqrt[Cos[c + d*x]]*((-4*(A - B - 9*C)*Csc[c])/(5*d) - ( 
4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] - 9*C*Sin[( 
d*x)/2]))/(5*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + 4*B*S 
in[(d*x)/2] - 9*C*Sin[(d*x)/2]))/(15*d) + (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^5 
*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(5*d) + (4*(A + 4*B - 
 9*C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(15*d) + (2*(A - B + C)*Sec[c/2 + (d* 
x)/2]^4*Tan[c/2])/(5*d)))/(a + a*Cos[c + d*x])^3 - (A*Cos[c/2 + (d*x)/2...
 

Rubi [A] (verified)

Time = 1.20 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.302, Rules used = {3042, 3520, 27, 3042, 3456, 3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x)} (a (7 A+3 B-3 C)-a (A-B-9 C) \cos (c+d x))}{2 (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x)} (a (7 A+3 B-3 C)-a (A-B-9 C) \cos (c+d x))}{(\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a (7 A+3 B-3 C)-a (A-B-9 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\frac {\int \frac {(4 A+B-6 C) a^2+(A+4 B+21 C) \cos (c+d x) a^2}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {(4 A+B-6 C) a^2+(A+4 B+21 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int \frac {5 (A+B+3 C) a^3+3 (A-B-9 C) \cos (c+d x) a^3}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {3 a^2 (A-B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {5 (A+B+3 C) a^3+3 (A-B-9 C) \cos (c+d x) a^3}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {3 a^2 (A-B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {5 (A+B+3 C) a^3+3 (A-B-9 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^3}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {3 a^2 (A-B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {\frac {5 a^3 (A+B+3 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^3 (A-B-9 C) \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {3 a^2 (A-B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {5 a^3 (A+B+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^3 (A-B-9 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {3 a^2 (A-B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {5 a^3 (A+B+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^3 (A-B-9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {3 a^2 (A-B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {\frac {10 a^3 (A+B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^3 (A-B-9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {3 a^2 (A-B-9 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}+\frac {2 a (4 A+B-6 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d (a \cos (c+d x)+a)^3}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + a*Co 
s[c + d*x])^3,x]
 

Output:

-1/5*((A - B + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]) 
^3) + ((2*a*(4*A + B - 6*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*C 
os[c + d*x])^2) + (((6*a^3*(A - B - 9*C)*EllipticE[(c + d*x)/2, 2])/d + (1 
0*a^3*(A + B + 3*C)*EllipticF[(c + d*x)/2, 2])/d)/(2*a^2) - (3*a^2*(A - B 
- 9*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))/(3*a^2)) 
/(10*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(623\) vs. \(2(178)=356\).

Time = 8.01 (sec) , antiderivative size = 624, normalized size of antiderivative = 3.27

method result size
default \(\frac {\sqrt {\left (-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-10 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+6 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-10 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-108 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-30 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-54 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-22 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+2 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+198 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+6 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+24 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-114 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+7 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-17 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+27 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 A +3 B -3 C \right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, d}\) \(624\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x, 
method=_RETURNVERBOSE)
 

Output:

1/60*((-1+2*cos(1/2*d*x+1/2*c)^2)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/ 
2*d*x+1/2*c)^8-10*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+ 
1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*A*co 
s(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-12*B*cos(1/2*d*x+1/2*c)^8-10 
*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5-6*B*cos(1/2*d*x+1/2*c)^ 
5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))-108*C*cos(1/2*d*x+1/2*c)^8-30*C*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/ 
2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5-54*C*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/ 
2*c),2^(1/2))-22*A*cos(1/2*d*x+1/2*c)^6+2*B*cos(1/2*d*x+1/2*c)^6+198*C*cos 
(1/2*d*x+1/2*c)^6+6*A*cos(1/2*d*x+1/2*c)^4+24*B*cos(1/2*d*x+1/2*c)^4-114*C 
*cos(1/2*d*x+1/2*c)^4+7*A*cos(1/2*d*x+1/2*c)^2-17*B*cos(1/2*d*x+1/2*c)^2+2 
7*C*cos(1/2*d*x+1/2*c)^2-3*A+3*B-3*C)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/2 
*d*x+1/2*c)^2)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 522, normalized size of antiderivative = 2.73 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c) 
)^3,x, algorithm="fricas")
 

Output:

-1/60*(2*(3*(A - B - 9*C)*cos(d*x + c)^2 + 2*(2*A - 7*B - 18*C)*cos(d*x + 
c) - 5*A - 5*B - 15*C)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(sqrt(2)*(I*A + 
 I*B + 3*I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(I*A + I*B + 3*I*C)*cos(d*x + c)^ 
2 + 3*sqrt(2)*(I*A + I*B + 3*I*C)*cos(d*x + c) + sqrt(2)*(I*A + I*B + 3*I* 
C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(sqrt(2) 
*(-I*A - I*B - 3*I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(-I*A - I*B - 3*I*C)*cos( 
d*x + c)^2 + 3*sqrt(2)*(-I*A - I*B - 3*I*C)*cos(d*x + c) + sqrt(2)*(-I*A - 
 I*B - 3*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 
 3*(sqrt(2)*(-I*A + I*B + 9*I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(-I*A + I*B + 
9*I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(-I*A + I*B + 9*I*C)*cos(d*x + c) + sqrt 
(2)*(-I*A + I*B + 9*I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2)*(I*A - I*B - 9*I*C)*cos(d*x 
 + c)^3 + 3*sqrt(2)*(I*A - I*B - 9*I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(I*A - 
I*B - 9*I*C)*cos(d*x + c) + sqrt(2)*(I*A - I*B - 9*I*C))*weierstrassZeta(- 
4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*c 
os(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+ 
c))**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c) 
)^3,x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*co 
s(d*x + c) + a)^3, x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c) 
)^3,x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(a*co 
s(d*x + c) + a)^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*co 
s(c + d*x))^3,x)
 

Output:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + a*co 
s(c + d*x))^3, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^3} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1}d x \right ) c}{a^{3}} \] Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3,x)
 

Output:

(int(sqrt(cos(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d 
*x) + 1),x)*a + int((sqrt(cos(c + d*x))*cos(c + d*x))/(cos(c + d*x)**3 + 3 
*cos(c + d*x)**2 + 3*cos(c + d*x) + 1),x)*b + int((sqrt(cos(c + d*x))*cos( 
c + d*x)**2)/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1),x) 
*c)/a**3