\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx\) [475]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 43, antiderivative size = 270 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {(119 A-49 B+9 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {(33 A-13 B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {(33 A-13 B+3 C) \sin (c+d x)}{6 a^3 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(119 A-49 B+9 C) \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^3}-\frac {(2 A-B) \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2}-\frac {(119 A-49 B+9 C) \sin (c+d x)}{30 d \cos ^{\frac {3}{2}}(c+d x) \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

1/10*(119*A-49*B+9*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*(33* 
A-13*B+3*C)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^3/d+1/6*(33*A-13*B+3* 
C)*sin(d*x+c)/a^3/d/cos(d*x+c)^(3/2)-1/10*(119*A-49*B+9*C)*sin(d*x+c)/a^3/ 
d/cos(d*x+c)^(1/2)-1/5*(A-B+C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+ 
c))^3-1/3*(2*A-B)*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2-1/30* 
(119*A-49*B+9*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a^3+a^3*cos(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.87 (sec) , antiderivative size = 1529, normalized size of antiderivative = 5.66 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + 
 a*Cos[c + d*x])^3),x]
 

Output:

(-22*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, 
Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - S 
in[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTa 
n[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])^ 
3*Sqrt[1 + Cot[c]^2]) + (26*B*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Hypergeometric 
PFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - Arc 
Tan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2] 
*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/( 
3*d*(a + a*Cos[c + d*x])^3*Sqrt[1 + Cot[c]^2]) - (2*C*Cos[c/2 + (d*x)/2]^6 
*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2 
]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*S 
qrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d 
*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])^3*Sqrt[1 + Cot[c]^2]) + (Co 
s[c/2 + (d*x)/2]^6*Sqrt[Cos[c + d*x]]*((-2*(60*A - 20*B + 59*A*Cos[c] - 29 
*B*Cos[c] + 9*C*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c])/(5*d) - (2*Sec[c/2]*Sec[ 
c/2 + (d*x)/2]^5*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(5*d) 
 - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(16*A*Sin[(d*x)/2] - 11*B*Sin[(d*x)/2] 
 + 6*C*Sin[(d*x)/2]))/(15*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(59*A*Sin[(d 
*x)/2] - 29*B*Sin[(d*x)/2] + 9*C*Sin[(d*x)/2]))/(5*d) + (16*A*Sec[c]*Sec[c 
 + d*x]^2*Sin[d*x])/(3*d) + (16*Sec[c]*Sec[c + d*x]*(A*Sin[c] - 9*A*Sin...
 

Rubi [A] (verified)

Time = 1.40 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.98, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.349, Rules used = {3042, 3520, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int \frac {a (13 A-3 B+3 C)-a (7 A-7 B-3 C) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (13 A-3 B+3 C)-a (7 A-7 B-3 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (13 A-3 B+3 C)-a (7 A-7 B-3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {3 a^2 (23 A-8 B+3 C)-25 a^2 (2 A-B) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 a^2 (23 A-8 B+3 C)-25 a^2 (2 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int \frac {3 \left (5 a^3 (33 A-13 B+3 C)-a^3 (119 A-49 B+9 C) \cos (c+d x)\right )}{2 \cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {3 \int \frac {5 a^3 (33 A-13 B+3 C)-a^3 (119 A-49 B+9 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {3 \int \frac {5 a^3 (33 A-13 B+3 C)-a^3 (119 A-49 B+9 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {\frac {3 \left (5 a^3 (33 A-13 B+3 C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx-a^3 (119 A-49 B+9 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {3 \left (5 a^3 (33 A-13 B+3 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-a^3 (119 A-49 B+9 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {\frac {3 \left (5 a^3 (33 A-13 B+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^3 (119 A-49 B+9 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {3 \left (5 a^3 (33 A-13 B+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^3 (119 A-49 B+9 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {3 \left (5 a^3 (33 A-13 B+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^3 (119 A-49 B+9 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {3 \left (5 a^3 (33 A-13 B+3 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^3 (119 A-49 B+9 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{2 a^2}-\frac {a^2 (119 A-49 B+9 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}}{3 a^2}-\frac {10 a (2 A-B) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x)}{5 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Cos 
[c + d*x])^3),x]
 

Output:

-1/5*((A - B + C)*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x]) 
^3) + ((-10*a*(2*A - B)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*(a + a*Cos[c 
 + d*x])^2) + (-((a^2*(119*A - 49*B + 9*C)*Sin[c + d*x])/(d*Cos[c + d*x]^( 
3/2)*(a + a*Cos[c + d*x]))) + (3*(5*a^3*(33*A - 13*B + 3*C)*((2*EllipticF[ 
(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) - a^3* 
(119*A - 49*B + 9*C)*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/ 
(d*Sqrt[Cos[c + d*x]]))))/(2*a^2))/(3*a^2))/(10*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1012\) vs. \(2(249)=498\).

Time = 9.52 (sec) , antiderivative size = 1013, normalized size of antiderivative = 3.75

method result size
default \(\text {Expression too large to display}\) \(1013\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^3,x, 
method=_RETURNVERBOSE)
 

Output:

-1/4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^3*((-24*A 
+8*B)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2* 
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c 
)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2)))+1/3*(4*A-2*B)*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x 
+1/2*c)-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2 
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1 
/2)))*cos(1/2*d*x+1/2*c)-12*sin(1/2*d*x+1/2*c)^6+20*sin(1/2*d*x+1/2*c)^4-7 
*sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)/(sin(1/2*d*x+1/2*c)^2-1)+(12*A-4*B)*(cos(1/2*d*x+1/2* 
c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*sin 
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(A-B+C)*(1/5*(-2*sin(1/2*d*x+1/2*c)^ 
4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^5+4/5*(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^3+18/5*(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)-8/5*(sin(1/2*d*x 
+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 605, normalized size of antiderivative = 2.24 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx =\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c) 
)^3,x, algorithm="fricas")
 

Output:

-1/60*(2*(3*(119*A - 49*B + 9*C)*cos(d*x + c)^4 + 2*(453*A - 188*B + 33*C) 
*cos(d*x + c)^3 + 5*(139*A - 59*B + 9*C)*cos(d*x + c)^2 + 60*(2*A - B)*cos 
(d*x + c) - 20*A)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(sqrt(2)*(33*I*A - 1 
3*I*B + 3*I*C)*cos(d*x + c)^5 + 3*sqrt(2)*(33*I*A - 13*I*B + 3*I*C)*cos(d* 
x + c)^4 + 3*sqrt(2)*(33*I*A - 13*I*B + 3*I*C)*cos(d*x + c)^3 + sqrt(2)*(3 
3*I*A - 13*I*B + 3*I*C)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x 
 + c) + I*sin(d*x + c)) + 5*(sqrt(2)*(-33*I*A + 13*I*B - 3*I*C)*cos(d*x + 
c)^5 + 3*sqrt(2)*(-33*I*A + 13*I*B - 3*I*C)*cos(d*x + c)^4 + 3*sqrt(2)*(-3 
3*I*A + 13*I*B - 3*I*C)*cos(d*x + c)^3 + sqrt(2)*(-33*I*A + 13*I*B - 3*I*C 
)*cos(d*x + c)^2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c) 
) + 3*(sqrt(2)*(-119*I*A + 49*I*B - 9*I*C)*cos(d*x + c)^5 + 3*sqrt(2)*(-11 
9*I*A + 49*I*B - 9*I*C)*cos(d*x + c)^4 + 3*sqrt(2)*(-119*I*A + 49*I*B - 9* 
I*C)*cos(d*x + c)^3 + sqrt(2)*(-119*I*A + 49*I*B - 9*I*C)*cos(d*x + c)^2)* 
weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
 + c))) + 3*(sqrt(2)*(119*I*A - 49*I*B + 9*I*C)*cos(d*x + c)^5 + 3*sqrt(2) 
*(119*I*A - 49*I*B + 9*I*C)*cos(d*x + c)^4 + 3*sqrt(2)*(119*I*A - 49*I*B + 
 9*I*C)*cos(d*x + c)^3 + sqrt(2)*(119*I*A - 49*I*B + 9*I*C)*cos(d*x + c)^2 
)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d 
*x + c))))/(a^3*d*cos(d*x + c)^5 + 3*a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d* 
x + c)^3 + a^3*d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+a*cos(d*x+ 
c))**3,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c) 
)^3,x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c) 
)^3,x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^3* 
cos(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos 
(c + d*x))^3),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos 
(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^3} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{6}+3 \cos \left (d x +c \right )^{5}+3 \cos \left (d x +c \right )^{4}+\cos \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}+3 \cos \left (d x +c \right )^{4}+3 \cos \left (d x +c \right )^{3}+\cos \left (d x +c \right )^{2}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}+3 \cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x \right ) c}{a^{3}} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^3,x)
 

Output:

(int(sqrt(cos(c + d*x))/(cos(c + d*x)**6 + 3*cos(c + d*x)**5 + 3*cos(c + d 
*x)**4 + cos(c + d*x)**3),x)*a + int(sqrt(cos(c + d*x))/(cos(c + d*x)**5 + 
 3*cos(c + d*x)**4 + 3*cos(c + d*x)**3 + cos(c + d*x)**2),x)*b + int(sqrt( 
cos(c + d*x))/(cos(c + d*x)**4 + 3*cos(c + d*x)**3 + 3*cos(c + d*x)**2 + c 
os(c + d*x)),x)*c)/a**3