\(\int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [497]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 233 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a^{5/2} (8 A+20 B+19 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}-\frac {a^3 (56 A+12 B-27 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}-\frac {a^2 (8 A+4 B-C) \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {2 a (5 A+3 B) (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 A (a+a \cos (c+d x))^{5/2} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

1/4*a^(5/2)*(8*A+20*B+19*C)*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/ 
2))/d-1/12*a^3*(56*A+12*B-27*C)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*cos(d*x 
+c))^(1/2)-1/2*a^2*(8*A+4*B-C)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2)*sin 
(d*x+c)/d+2/3*a*(5*A+3*B)*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^( 
1/2)+2/3*A*(a+a*cos(d*x+c))^(5/2)*sin(d*x+c)/d/cos(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.19 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.67 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (6 \sqrt {2} (8 A+20 B+19 C) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {3}{2}}(c+d x)+2 (16 A+12 B+33 C+(128 A+48 B+9 C) \cos (c+d x)+3 (4 B+11 C) \cos (2 (c+d x))+3 C \cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d \cos ^{\frac {3}{2}}(c+d x)} \] Input:

Integrate[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x] 
^2))/Cos[c + d*x]^(5/2),x]
 

Output:

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(6*Sqrt[2]*(8*A + 20*B + 
19*C)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^(3/2) + 2*(16*A + 12*B 
 + 33*C + (128*A + 48*B + 9*C)*Cos[c + d*x] + 3*(4*B + 11*C)*Cos[2*(c + d* 
x)] + 3*C*Cos[3*(c + d*x)])*Sin[(c + d*x)/2]))/(48*d*Cos[c + d*x]^(3/2))
 

Rubi [A] (verified)

Time = 1.44 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.04, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.311, Rules used = {3042, 3522, 27, 3042, 3454, 27, 3042, 3455, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^{5/2} (a (5 A+3 B)-a (4 A-3 C) \cos (c+d x))}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^{5/2} (a (5 A+3 B)-a (4 A-3 C) \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2} \left (a (5 A+3 B)-a (4 A-3 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {2 \int \frac {(\cos (c+d x) a+a)^{3/2} \left (a^2 (16 A+12 B+3 C)-3 a^2 (8 A+4 B-C) \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(\cos (c+d x) a+a)^{3/2} \left (a^2 (16 A+12 B+3 C)-3 a^2 (8 A+4 B-C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a^2 (16 A+12 B+3 C)-3 a^2 (8 A+4 B-C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a} \left (a^3 (40 A+36 B+15 C)-a^3 (56 A+12 B-27 C) \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x)}}dx-\frac {3 a^3 (8 A+4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{4} \int \frac {\sqrt {\cos (c+d x) a+a} \left (a^3 (40 A+36 B+15 C)-a^3 (56 A+12 B-27 C) \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}}dx-\frac {3 a^3 (8 A+4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a^3 (40 A+36 B+15 C)-a^3 (56 A+12 B-27 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {3 a^3 (8 A+4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {\frac {1}{4} \left (\frac {3}{2} a^3 (8 A+20 B+19 C) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx-\frac {a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {3 a^3 (8 A+4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {3}{2} a^3 (8 A+20 B+19 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {3 a^3 (8 A+4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {\frac {1}{4} \left (-\frac {3 a^3 (8 A+20 B+19 C) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {3 a^3 (8 A+4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {-\frac {3 a^3 (8 A+4 B-C) \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}+\frac {2 a^2 (5 A+3 B) \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{d \sqrt {\cos (c+d x)}}+\frac {1}{4} \left (\frac {3 a^{7/2} (8 A+20 B+19 C) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {a^4 (56 A+12 B-27 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )}{3 a}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/C 
os[c + d*x]^(5/2),x]
 

Output:

(2*A*(a + a*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ( 
(-3*a^3*(8*A + 4*B - C)*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*Sin[c 
+ d*x])/(2*d) + (2*a^2*(5*A + 3*B)*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x] 
)/(d*Sqrt[Cos[c + d*x]]) + ((3*a^(7/2)*(8*A + 20*B + 19*C)*ArcSin[(Sqrt[a] 
*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (a^4*(56*A + 12*B - 27*C)*Sq 
rt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/4)/(3*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [A] (verified)

Time = 1.72 (sec) , antiderivative size = 315, normalized size of antiderivative = 1.35

method result size
default \(\frac {a^{2} \sqrt {2}\, \sqrt {a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) \left (24 \cos \left (d x +c \right )^{2}+24 \cos \left (d x +c \right )\right )+B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) \left (60 \cos \left (d x +c \right )^{2}+60 \cos \left (d x +c \right )\right )+C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) \left (57 \cos \left (d x +c \right )^{2}+57 \cos \left (d x +c \right )\right )+\left (64 \cos \left (d x +c \right )+8\right ) \sin \left (d x +c \right ) A +\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (12 \cos \left (d x +c \right )+24\right ) B +\sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} \left (6 \cos \left (d x +c \right )+33\right ) C \right )}{12 d \cos \left (d x +c \right )^{\frac {3}{2}} \left (1+\cos \left (d x +c \right )\right )}\) \(315\)
parts \(\frac {2 A \,a^{2} \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (4 \sin \left (2 d x +2 c \right )+\sin \left (d x +c \right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right ) \left (3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )\right )\right )}{3 d \cos \left (d x +c \right )^{\frac {3}{2}} \left (1+\cos \left (d x +c \right )\right )}+\frac {B \,a^{2} \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\frac {\sin \left (2 d x +2 c \right )}{2}+2 \sin \left (d x +c \right )+5 \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )\right )}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}}+\frac {C \,a^{2} \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (2 \cos \left (d x +c \right )+11\right )+19 \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}}\) \(358\)

Input:

int((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2 
),x,method=_RETURNVERBOSE)
 

Output:

1/12/d*a^2*2^(1/2)*(a*cos(1/2*d*x+1/2*c)^2)^(1/2)*(A*(cos(d*x+c)/(1+cos(d* 
x+c)))^(1/2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))*(24*cos( 
d*x+c)^2+24*cos(d*x+c))+B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan((cos(d* 
x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c))*(60*cos(d*x+c)^2+60*cos(d*x+c))+C*( 
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)* 
tan(d*x+c))*(57*cos(d*x+c)^2+57*cos(d*x+c))+(64*cos(d*x+c)+8)*sin(d*x+c)*A 
+sin(d*x+c)*cos(d*x+c)*(12*cos(d*x+c)+24)*B+sin(d*x+c)*cos(d*x+c)^2*(6*cos 
(d*x+c)+33)*C)/cos(d*x+c)^(3/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.92 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {{\left (6 \, C a^{2} \cos \left (d x + c\right )^{3} + 3 \, {\left (4 \, B + 11 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 8 \, {\left (8 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right ) + 8 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (8 \, A + 20 \, B + 19 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + {\left (8 \, A + 20 \, B + 19 \, C\right )} a^{2} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{12 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c 
)^(5/2),x, algorithm="fricas")
 

Output:

1/12*((6*C*a^2*cos(d*x + c)^3 + 3*(4*B + 11*C)*a^2*cos(d*x + c)^2 + 8*(8*A 
 + 3*B)*a^2*cos(d*x + c) + 8*A*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x 
+ c))*sin(d*x + c) + 3*((8*A + 20*B + 19*C)*a^2*cos(d*x + c)^3 + (8*A + 20 
*B + 19*C)*a^2*cos(d*x + c)^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqr 
t(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c)))) 
/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x 
+c)**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3474 vs. \(2 (201) = 402\).

Time = 0.53 (sec) , antiderivative size = 3474, normalized size of antiderivative = 14.91 \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c 
)^(5/2),x, algorithm="maxima")
 

Output:

1/48*(3*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
 1)^(1/4)*((a^2*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(2 
*d*x + 2*c) + a^2*sin(2*d*x + 2*c) - (a^2*cos(2*d*x + 2*c) - 10*a^2)*sin(1 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1)) + (a^2*sin(2*d*x + 2*c)*sin(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c))) - a^2*cos(2*d*x + 2*c) + 10*a^2 + (a^2* 
cos(2*d*x + 2*c) - 10*a^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2 
*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 
 19*(a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 
2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin( 
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x 
+ 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1) 
)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c)))) + 1) - a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2 
*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) 
 - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arc...
 

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c 
)^(5/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \] Input:

int(((a + a*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^(5/2),x)
 

Output:

int(((a + a*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/c 
os(c + d*x)^(5/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \cos (c+d x))^{5/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\sqrt {a}\, a^{2} \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) a +2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) a +2 \left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) c +\left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}d x \right ) b +2 \left (\int \sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}d x \right ) c \right ) \] Input:

int((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2 
),x)
 

Output:

sqrt(a)*a**2*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x) 
,x)*a + 2*int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x),x)* 
b + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x),x)*c + in 
t((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x)*a + 2*int 
((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*a + int((s 
qrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + d*x)**2,x)*b + int(sqrt( 
cos(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x),x)*c + int(sqrt(cos(c + 
d*x) + 1)*sqrt(cos(c + d*x)),x)*b + 2*int(sqrt(cos(c + d*x) + 1)*sqrt(cos( 
c + d*x)),x)*c)