\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx\) [507]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 143 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A-B+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (A-3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \] Output:

2^(1/2)*(A-B+C)*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+ 
a*cos(d*x+c))^(1/2))/a^(1/2)/d+2/3*A*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*co 
s(d*x+c))^(1/2)-2/3*(A-3*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)) 
^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.96 (sec) , antiderivative size = 701, normalized size of antiderivative = 4.90 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*Sqrt 
[a + a*Cos[c + d*x]]),x]
 

Output:

(4*B*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(3*d*Sqrt[a*(1 + Cos[c + d*x]) 
]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2)) - (8*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + 
(d*x)/2]^3)/(3*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^( 
3/2)) + (8*B*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(3*d*Sqrt[a*(1 + Cos[c 
 + d*x])]*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]) + (2*(A - B + C)*Cot[c/2 + (d* 
x)/2]*Csc[c/2 + (d*x)/2]^4*(-12*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{2, 2 
, 7/2}, {1, 9/2}, -(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]*Si 
n[c/2 + (d*x)/2]^8 - 12*Hypergeometric2F1[2, 7/2, 9/2, -(Sin[c/2 + (d*x)/2 
]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]*Sin[c/2 + (d*x)/2]^8*(4 - 7*Sin[c/2 + ( 
d*x)/2]^2 + 3*Sin[c/2 + (d*x)/2]^4) + 7*Sqrt[-(Sin[c/2 + (d*x)/2]^2/(1 - 2 
*Sin[c/2 + (d*x)/2]^2))]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^3*(15 - 20*Sin[c/2 + 
 (d*x)/2]^2 + 8*Sin[c/2 + (d*x)/2]^4)*((3 - 7*Sin[c/2 + (d*x)/2]^2)*Sqrt[- 
(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))] - 3*ArcTanh[Sqrt[-(Si 
n[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]]*(1 - 2*Sin[c/2 + (d*x)/ 
2]^2))))/(63*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/ 
2))
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.06, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3522, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {2 \int -\frac {a (A-3 B)-a (2 A+3 C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}+\frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a (A-3 B)-a (2 A+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a (A-3 B)-a (2 A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {3 a^2 (A-B+C)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 a (A-3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-3 a (A-B+C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-3 a (A-B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {6 a^2 (A-B+C) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {2 a (A-3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-3 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {3 \sqrt {2} \sqrt {a} (A-B+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{3 a}\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*Sqrt[a + a 
*Cos[c + d*x]]),x]
 

Output:

(2*A*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) - ((- 
3*Sqrt[2]*Sqrt[a]*(A - B + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[ 
Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d + (2*a*(A - 3*B)*Sin[c + d*x]) 
/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]))/(3*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(244\) vs. \(2(120)=240\).

Time = 1.44 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.71

method result size
default \(-\frac {\sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )\right )+B \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (-3 \cos \left (d x +c \right )^{2}-3 \cos \left (d x +c \right )\right )+C \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )\right )+\sin \left (d x +c \right ) \left (\cos \left (d x +c \right )-1\right ) \sqrt {2}\, A -\frac {3 \sqrt {2}\, \sin \left (2 d x +2 c \right ) B}{2}\right )}{3 d a \cos \left (d x +c \right )^{\frac {3}{2}} \left (1+\cos \left (d x +c \right )\right )}\) \(245\)
parts \(-\frac {A \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right ) \left (\cos \left (d x +c \right )-1\right ) \sqrt {2}+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )\right )\right )}{3 d a \cos \left (d x +c \right )^{\frac {3}{2}} \left (1+\cos \left (d x +c \right )\right )}+\frac {B \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sqrt {2}\, \sin \left (d x +c \right )\right )}{d a \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )}-\frac {C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{d a \sqrt {\cos \left (d x +c \right )}}\) \(281\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

-1/3/d/a*2^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(A*arcsin(cot(d*x+c)-csc(d*x+c)) 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(3*cos(d*x+c)^2+3*cos(d*x+c))+B*arcsin( 
cot(d*x+c)-csc(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-3*cos(d*x+c)^2- 
3*cos(d*x+c))+C*arcsin(cot(d*x+c)-csc(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*(3*cos(d*x+c)^2+3*cos(d*x+c))+sin(d*x+c)*(cos(d*x+c)-1)*2^(1/2)*A-3/ 
2*2^(1/2)*sin(2*d*x+2*c)*B)/cos(d*x+c)^(3/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.15 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {2 \, {\left ({\left (A - 3 \, B\right )} \cos \left (d x + c\right ) - A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \frac {3 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right )^{3} + {\left (A - B + C\right )} a \cos \left (d x + c\right )^{2}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a}}\right )}{\sqrt {a}}}{3 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c) 
)^(1/2),x, algorithm="fricas")
 

Output:

-1/3*(2*((A - 3*B)*cos(d*x + c) - A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x 
 + c))*sin(d*x + c) - 3*sqrt(2)*((A - B + C)*a*cos(d*x + c)^3 + (A - B + C 
)*a*cos(d*x + c)^2)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d 
*x + c))*sin(d*x + c)/((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)))/sqrt(a))/ 
(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+a*cos(d*x+ 
c))**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)/(sqrt(a*(cos(c + d*x) + 
1))*cos(c + d*x)**(5/2)), x)
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.03 (sec) , antiderivative size = 2006, normalized size of antiderivative = 14.03 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c) 
)^(1/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

1/3*(3*sqrt(2)*C*arctan2(((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + s 
in(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*a 
bs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d 
*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4) 
*sin(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1 
)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos 
(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x + 
 I*c) + 1), ((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 
 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + 
 I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)* 
sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sqrt(a)*cos( 
1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, 
(abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x 
+ c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sqrt(a)*cos(d*x + c) - sqrt(a))/( 
sqrt(a)*abs(e^(I*d*x + I*c) + 1)))/sqrt(a) + 3*(2*cos(1/2*arctan2(sin(2*d* 
x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - 2*(cos(d*x + c) - 1)*sin(1 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*(cos(2*d*x + 
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*arctan2(((abs 
(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c 
)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 -...
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt {a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c) 
)^(1/2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(sqrt(a*cos(d*x + c) + a 
)*cos(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos 
(c + d*x))^(1/2)),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a*cos 
(c + d*x))^(1/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}+\cos \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+\cos \left (d x +c \right )^{2}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x \right ) c \right )}{a} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2 
),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x)**4 
 + cos(c + d*x)**3),x)*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x))) 
/(cos(c + d*x)**3 + cos(c + d*x)**2),x)*b + int((sqrt(cos(c + d*x) + 1)*sq 
rt(cos(c + d*x)))/(cos(c + d*x)**2 + cos(c + d*x)),x)*c))/a