\(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx\) [509]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [C] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 237 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A-B+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (A-7 B) \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A-7 B+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (43 A-91 B+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \] Output:

2^(1/2)*(A-B+C)*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+ 
a*cos(d*x+c))^(1/2))/a^(1/2)/d+2/7*A*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*co 
s(d*x+c))^(1/2)-2/35*(A-7*B)*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c) 
)^(1/2)+2/105*(31*A-7*B+35*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c 
))^(1/2)-2/105*(43*A-91*B+35*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x 
+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 9.74 (sec) , antiderivative size = 2797, normalized size of antiderivative = 11.80 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Result too large to show} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(9/2)*Sqrt 
[a + a*Cos[c + d*x]]),x]
 

Output:

(4*B*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(7*d*Sqrt[a*(1 + Cos[c + d*x]) 
]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/2)) - (4*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + 
(d*x)/2])/(7*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/ 
2)) + (24*B*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(35*d*Sqrt[a*(1 + Cos[c 
 + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(5/2)) + (4*C*Cos[c/2 + (d*x)/2]*Si 
n[c/2 + (d*x)/2])/(35*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/ 
2]^2)^(5/2)) + (32*B*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(35*d*Sqrt[a*( 
1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2)) + (16*C*Cos[c/2 + ( 
d*x)/2]*Sin[c/2 + (d*x)/2])/(105*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c 
/2 + (d*x)/2]^2)^(3/2)) + (64*B*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(35 
*d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]) + (32*C*Co 
s[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(105*d*Sqrt[a*(1 + Cos[c + d*x])]*Sqr 
t[1 - 2*Sin[c/2 + (d*x)/2]^2]) + (2*(A - B + C)*Cot[c/2 + (d*x)/2]*Csc[c/2 
 + (d*x)/2]^8*(363825*Sin[c/2 + (d*x)/2]^2 - 4729725*Sin[c/2 + (d*x)/2]^4 
+ 26785605*Sin[c/2 + (d*x)/2]^6 - 86790165*Sin[c/2 + (d*x)/2]^8 + 17767780 
8*Sin[c/2 + (d*x)/2]^10 - 239283044*Sin[c/2 + (d*x)/2]^12 + 52080*Hypergeo 
metric2F1[2, 11/2, 13/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2 
)]*Sin[c/2 + (d*x)/2]^12 + 560*HypergeometricPFQ[{2, 2, 2, 2, 11/2}, {1, 1 
, 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + 
(d*x)/2]^12 + 213120160*Sin[c/2 + (d*x)/2]^14 - 168280*Hypergeometric2F...
 

Rubi [A] (verified)

Time = 1.44 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.13, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3522, 27, 3042, 3463, 27, 3042, 3463, 27, 3042, 3463, 27, 3042, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{9/2} \sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {2 \int -\frac {a (A-7 B)-a (6 A+7 C) \cos (c+d x)}{2 \cos ^{\frac {7}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{7 a}+\frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a (A-7 B)-a (6 A+7 C) \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a (A-7 B)-a (6 A+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{7 a}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {a^2 (31 A-7 B+35 C)-4 a^2 (A-7 B) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{5 a}+\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}}{7 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^2 (31 A-7 B+35 C)-4 a^2 (A-7 B) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{5 a}}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^2 (31 A-7 B+35 C)-4 a^2 (A-7 B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}}{7 a}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {a^3 (43 A-91 B+35 C)-2 a^3 (31 A-7 B+35 C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}+\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}}{5 a}}{7 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^3 (43 A-91 B+35 C)-2 a^3 (31 A-7 B+35 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {\cos (c+d x) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {a^3 (43 A-91 B+35 C)-2 a^3 (31 A-7 B+35 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 \int -\frac {105 a^4 (A-B+C)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 a^3 (43 A-91 B+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^3 (43 A-91 B+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-105 a^3 (A-B+C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^3 (43 A-91 B+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-105 a^3 (A-B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {210 a^4 (A-B+C) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}+\frac {2 a^3 (43 A-91 B+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}}{3 a}}{5 a}}{7 a}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a (A-7 B) \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^2 (31 A-7 B+35 C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {\frac {2 a^3 (43 A-91 B+35 C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {105 \sqrt {2} a^{5/2} (A-B+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{3 a}}{5 a}}{7 a}\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(9/2)*Sqrt[a + a 
*Cos[c + d*x]]),x]
 

Output:

(2*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) - ((2 
*a*(A - 7*B)*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x] 
]) - ((2*a^2*(31*A - 7*B + 35*C)*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)*Sqr 
t[a + a*Cos[c + d*x]]) - ((-105*Sqrt[2]*a^(5/2)*(A - B + C)*ArcTan[(Sqrt[a 
]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d 
+ (2*a^3*(43*A - 91*B + 35*C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + 
 a*Cos[c + d*x]]))/(3*a))/(5*a))/(7*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
Maple [A] (verified)

Time = 1.43 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.37

method result size
default \(-\frac {\sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (A \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (105 \cos \left (d x +c \right )^{4}+105 \cos \left (d x +c \right )^{3}\right )+B \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (-105 \cos \left (d x +c \right )^{4}-105 \cos \left (d x +c \right )^{3}\right )+C \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (105 \cos \left (d x +c \right )^{4}+105 \cos \left (d x +c \right )^{3}\right )+\sin \left (d x +c \right ) \left (43 \cos \left (d x +c \right )^{3}-31 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )-15\right ) \sqrt {2}\, A +\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (-91 \cos \left (d x +c \right )^{2}+7 \cos \left (d x +c \right )-21\right ) \sqrt {2}\, B +\sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} \left (35 \cos \left (d x +c \right )-35\right ) \sqrt {2}\, C \right )}{105 d a \cos \left (d x +c \right )^{\frac {7}{2}} \left (1+\cos \left (d x +c \right )\right )}\) \(324\)
parts \(-\frac {A \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right ) \left (43 \cos \left (d x +c \right )^{3}-31 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )-15\right ) \sqrt {2}+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (105 \cos \left (d x +c \right )^{4}+105 \cos \left (d x +c \right )^{3}\right )\right )}{105 d a \cos \left (d x +c \right )^{\frac {7}{2}} \left (1+\cos \left (d x +c \right )\right )}+\frac {B \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right ) \left (13 \cos \left (d x +c \right )^{2}-\cos \left (d x +c \right )+3\right ) \sqrt {2}+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (15 \cos \left (d x +c \right )^{3}+15 \cos \left (d x +c \right )^{2}\right )\right )}{15 d a \cos \left (d x +c \right )^{\frac {5}{2}} \left (1+\cos \left (d x +c \right )\right )}-\frac {C \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right ) \left (\cos \left (d x +c \right )-1\right ) \sqrt {2}+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )\right )\right )}{3 d a \cos \left (d x +c \right )^{\frac {3}{2}} \left (1+\cos \left (d x +c \right )\right )}\) \(388\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2 
),x,method=_RETURNVERBOSE)
 

Output:

-1/105/d/a*2^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(A*arcsin(cot(d*x+c)-csc(d*x+c 
))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(105*cos(d*x+c)^4+105*cos(d*x+c)^3)+B 
*arcsin(cot(d*x+c)-csc(d*x+c))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-105*cos 
(d*x+c)^4-105*cos(d*x+c)^3)+C*arcsin(cot(d*x+c)-csc(d*x+c))*(cos(d*x+c)/(1 
+cos(d*x+c)))^(1/2)*(105*cos(d*x+c)^4+105*cos(d*x+c)^3)+sin(d*x+c)*(43*cos 
(d*x+c)^3-31*cos(d*x+c)^2+3*cos(d*x+c)-15)*2^(1/2)*A+sin(d*x+c)*cos(d*x+c) 
*(-91*cos(d*x+c)^2+7*cos(d*x+c)-21)*2^(1/2)*B+sin(d*x+c)*cos(d*x+c)^2*(35* 
cos(d*x+c)-35)*2^(1/2)*C)/cos(d*x+c)^(7/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 205, normalized size of antiderivative = 0.86 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {2 \, {\left ({\left (43 \, A - 91 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{3} - {\left (31 \, A - 7 \, B + 35 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (A - 7 \, B\right )} \cos \left (d x + c\right ) - 15 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \frac {105 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right )^{5} + {\left (A - B + C\right )} a \cos \left (d x + c\right )^{4}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a}}\right )}{\sqrt {a}}}{105 \, {\left (a d \cos \left (d x + c\right )^{5} + a d \cos \left (d x + c\right )^{4}\right )}} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c) 
)^(1/2),x, algorithm="fricas")
 

Output:

-1/105*(2*((43*A - 91*B + 35*C)*cos(d*x + c)^3 - (31*A - 7*B + 35*C)*cos(d 
*x + c)^2 + 3*(A - 7*B)*cos(d*x + c) - 15*A)*sqrt(a*cos(d*x + c) + a)*sqrt 
(cos(d*x + c))*sin(d*x + c) - 105*sqrt(2)*((A - B + C)*a*cos(d*x + c)^5 + 
(A - B + C)*a*cos(d*x + c)^4)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)* 
sqrt(cos(d*x + c))*sin(d*x + c)/((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a))) 
/sqrt(a))/(a*d*cos(d*x + c)^5 + a*d*cos(d*x + c)^4)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2)/(a+a*cos(d*x+ 
c))**(1/2),x)
 

Output:

Timed out
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.04 (sec) , antiderivative size = 3203, normalized size of antiderivative = 13.51 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c) 
)^(1/2),x, algorithm="maxima")
 

Output:

1/105*((105*(sqrt(2)*cos(2*d*x + 2*c)^4 + sqrt(2)*sin(2*d*x + 2*c)^4 + 4*s 
qrt(2)*cos(2*d*x + 2*c)^3 + 2*(sqrt(2)*cos(2*d*x + 2*c)^2 + 2*sqrt(2)*cos( 
2*d*x + 2*c) + sqrt(2))*sin(2*d*x + 2*c)^2 + 6*sqrt(2)*cos(2*d*x + 2*c)^2 
+ 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sqrt(a)*arctan2(((abs(e^(I*d*x + I 
*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x 
 + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^ 
3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c 
)^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d 
*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x 
+ c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) 
 + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c) + 1)^4 + 
cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*c 
os(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d* 
x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d 
*x + c) + 1)^(1/4)*sqrt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + 
c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^ 
2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sq 
rt(a)*cos(d*x + c) - sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1))) - 2*(cos 
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*(43*( 
cos(2*d*x + 2*c)^2*sin(d*x + c) + sin(2*d*x + 2*c)^2*sin(d*x + c) + 2*c...
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{\sqrt {a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c) 
)^(1/2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/(sqrt(a*cos(d*x + c) + a 
)*cos(d*x + c)^(9/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{{\cos \left (c+d\,x\right )}^{9/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(9/2)*(a + a*cos 
(c + d*x))^(1/2)),x)
 

Output:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(9/2)*(a + a*cos 
(c + d*x))^(1/2)), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{6}+\cos \left (d x +c \right )^{5}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5}+\cos \left (d x +c \right )^{4}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4}+\cos \left (d x +c \right )^{3}}d x \right ) c \right )}{a} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2 
),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x)**6 
 + cos(c + d*x)**5),x)*a + int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x))) 
/(cos(c + d*x)**5 + cos(c + d*x)**4),x)*b + int((sqrt(cos(c + d*x) + 1)*sq 
rt(cos(c + d*x)))/(cos(c + d*x)**4 + cos(c + d*x)**3),x)*c))/a