\(\int (a+a \cos (c+d x))^4 (A+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\) [33]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 186 \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=2 a^4 (2 A+3 C) x+\frac {a^4 (13 A+2 C) \text {arctanh}(\sin (c+d x))}{2 d}-\frac {5 a^4 (A-2 C) \sin (c+d x)}{2 d}-\frac {(15 A-2 C) \left (a^2+a^2 \cos (c+d x)\right )^2 \sin (c+d x)}{6 d}-\frac {(9 A-4 C) \left (a^4+a^4 \cos (c+d x)\right ) \sin (c+d x)}{3 d}+\frac {2 a A (a+a \cos (c+d x))^3 \tan (c+d x)}{d}+\frac {A (a+a \cos (c+d x))^4 \sec (c+d x) \tan (c+d x)}{2 d} \] Output:

2*a^4*(2*A+3*C)*x+1/2*a^4*(13*A+2*C)*arctanh(sin(d*x+c))/d-5/2*a^4*(A-2*C) 
*sin(d*x+c)/d-1/6*(15*A-2*C)*(a^2+a^2*cos(d*x+c))^2*sin(d*x+c)/d-1/3*(9*A- 
4*C)*(a^4+a^4*cos(d*x+c))*sin(d*x+c)/d+2*a*A*(a+a*cos(d*x+c))^3*tan(d*x+c) 
/d+1/2*A*(a+a*cos(d*x+c))^4*sec(d*x+c)*tan(d*x+c)/d
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(756\) vs. \(2(186)=372\).

Time = 12.22 (sec) , antiderivative size = 756, normalized size of antiderivative = 4.06 \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx =\text {Too large to display} \] Input:

Integrate[(a + a*Cos[c + d*x])^4*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]
 

Output:

((2*A + 3*C)*x*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8)/8 + ((-13*A - 
2*C)*(a + a*Cos[c + d*x])^4*Log[Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2]]*S 
ec[c/2 + (d*x)/2]^8)/(32*d) + ((13*A + 2*C)*(a + a*Cos[c + d*x])^4*Log[Cos 
[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^8)/(32*d) + ((4*A 
 + 27*C)*Cos[d*x]*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[c])/(64* 
d) + (C*Cos[2*d*x]*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[2*c])/( 
16*d) + (C*Cos[3*d*x]*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[3*c] 
)/(192*d) + ((4*A + 27*C)*Cos[c]*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2] 
^8*Sin[d*x])/(64*d) + (C*Cos[2*c]*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2 
]^8*Sin[2*d*x])/(16*d) + (C*Cos[3*c]*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x 
)/2]^8*Sin[3*d*x])/(192*d) + (A*(a + a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^ 
8)/(64*d*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^2) + (A*(a + a*Cos[c + 
d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[(d*x)/2])/(4*d*(Cos[c/2] - Sin[c/2])*(Cos 
[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])) - (A*(a + a*Cos[c + d*x])^4*Sec[c/2 
 + (d*x)/2]^8)/(64*d*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^2) + (A*(a 
+ a*Cos[c + d*x])^4*Sec[c/2 + (d*x)/2]^8*Sin[(d*x)/2])/(4*d*(Cos[c/2] + Si 
n[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]))
 

Rubi [A] (verified)

Time = 1.59 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.05, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.515, Rules used = {3042, 3523, 3042, 3454, 3042, 3455, 3042, 3455, 27, 3042, 3447, 3042, 3502, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(c+d x) (a \cos (c+d x)+a)^4 \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4 \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^4 (4 a A-a (3 A-2 C) \cos (c+d x)) \sec ^2(c+d x)dx}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^4 \left (4 a A-a (3 A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^3 \left (a^2 (13 A+2 C)-a^2 (15 A-2 C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3 \left (a^2 (13 A+2 C)-a^2 (15 A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {1}{3} \int (\cos (c+d x) a+a)^2 \left (3 a^3 (13 A+2 C)-4 a^3 (9 A-4 C) \cos (c+d x)\right ) \sec (c+d x)dx-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (3 a^3 (13 A+2 C)-4 a^3 (9 A-4 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \int 6 (\cos (c+d x) a+a) \left (a^4 (13 A+2 C)-5 a^4 (A-2 C) \cos (c+d x)\right ) \sec (c+d x)dx-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \left (3 \int (\cos (c+d x) a+a) \left (a^4 (13 A+2 C)-5 a^4 (A-2 C) \cos (c+d x)\right ) \sec (c+d x)dx-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (3 \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a^4 (13 A+2 C)-5 a^4 (A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{3} \left (3 \int \left (-5 (A-2 C) \cos ^2(c+d x) a^5+(13 A+2 C) a^5+\left (a^5 (13 A+2 C)-5 a^5 (A-2 C)\right ) \cos (c+d x)\right ) \sec (c+d x)dx-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (3 \int \frac {-5 (A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^5+(13 A+2 C) a^5+\left (a^5 (13 A+2 C)-5 a^5 (A-2 C)\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {\frac {1}{3} \left (3 \left (\int \left ((13 A+2 C) a^5+4 (2 A+3 C) \cos (c+d x) a^5\right ) \sec (c+d x)dx-\frac {5 a^5 (A-2 C) \sin (c+d x)}{d}\right )-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (3 \left (\int \frac {(13 A+2 C) a^5+4 (2 A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^5}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {5 a^5 (A-2 C) \sin (c+d x)}{d}\right )-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {\frac {1}{3} \left (3 \left (a^5 (13 A+2 C) \int \sec (c+d x)dx-\frac {5 a^5 (A-2 C) \sin (c+d x)}{d}+4 a^5 x (2 A+3 C)\right )-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (3 \left (a^5 (13 A+2 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx-\frac {5 a^5 (A-2 C) \sin (c+d x)}{d}+4 a^5 x (2 A+3 C)\right )-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {1}{3} \left (3 \left (\frac {a^5 (13 A+2 C) \text {arctanh}(\sin (c+d x))}{d}-\frac {5 a^5 (A-2 C) \sin (c+d x)}{d}+4 a^5 x (2 A+3 C)\right )-\frac {2 (9 A-4 C) \sin (c+d x) \left (a^5 \cos (c+d x)+a^5\right )}{d}\right )-\frac {a^3 (15 A-2 C) \sin (c+d x) (a \cos (c+d x)+a)^2}{3 d}+\frac {4 a^2 A \tan (c+d x) (a \cos (c+d x)+a)^3}{d}}{2 a}+\frac {A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^4}{2 d}\)

Input:

Int[(a + a*Cos[c + d*x])^4*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]
 

Output:

(A*(a + a*Cos[c + d*x])^4*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (-1/3*(a^3*(1 
5*A - 2*C)*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/d + ((-2*(9*A - 4*C)*(a^5 
+ a^5*Cos[c + d*x])*Sin[c + d*x])/d + 3*(4*a^5*(2*A + 3*C)*x + (a^5*(13*A 
+ 2*C)*ArcTanh[Sin[c + d*x]])/d - (5*a^5*(A - 2*C)*Sin[c + d*x])/d))/3 + ( 
4*a^2*A*(a + a*Cos[c + d*x])^3*Tan[c + d*x])/d)/(2*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 12.76 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.96

method result size
parallelrisch \(\frac {\left (-13 \left (\cos \left (2 d x +2 c \right )+1\right ) \left (A +\frac {2 C}{13}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+13 \left (\cos \left (2 d x +2 c \right )+1\right ) \left (A +\frac {2 C}{13}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+8 \left (A +\frac {3 C}{2}\right ) x d \cos \left (2 d x +2 c \right )+\left (8 A +2 C \right ) \sin \left (2 d x +2 c \right )+\left (A +\frac {83 C}{12}\right ) \sin \left (3 d x +3 c \right )+\sin \left (4 d x +4 c \right ) C +\frac {C \sin \left (5 d x +5 c \right )}{12}+\left (3 A +\frac {41 C}{6}\right ) \sin \left (d x +c \right )+8 \left (A +\frac {3 C}{2}\right ) x d \right ) a^{4}}{2 d \left (\cos \left (2 d x +2 c \right )+1\right )}\) \(179\)
parts \(\frac {a^{4} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {\left (a^{4} A +6 a^{4} C \right ) \sin \left (d x +c \right )}{d}+\frac {\left (4 a^{4} A +4 a^{4} C \right ) \left (d x +c \right )}{d}+\frac {\left (6 a^{4} A +a^{4} C \right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {a^{4} C \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3 d}+\frac {4 a^{4} A \tan \left (d x +c \right )}{d}+\frac {4 a^{4} C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(186\)
derivativedivides \(\frac {a^{4} A \sin \left (d x +c \right )+\frac {a^{4} C \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+4 a^{4} A \left (d x +c \right )+4 a^{4} C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+6 a^{4} A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+6 a^{4} C \sin \left (d x +c \right )+4 a^{4} A \tan \left (d x +c \right )+4 a^{4} C \left (d x +c \right )+a^{4} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{4} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(188\)
default \(\frac {a^{4} A \sin \left (d x +c \right )+\frac {a^{4} C \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+4 a^{4} A \left (d x +c \right )+4 a^{4} C \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+6 a^{4} A \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+6 a^{4} C \sin \left (d x +c \right )+4 a^{4} A \tan \left (d x +c \right )+4 a^{4} C \left (d x +c \right )+a^{4} A \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{4} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(188\)
risch \(4 a^{4} x A +6 a^{4} C x -\frac {i a^{4} C \,{\mathrm e}^{3 i \left (d x +c \right )}}{24 d}-\frac {i {\mathrm e}^{2 i \left (d x +c \right )} a^{4} C}{2 d}-\frac {i {\mathrm e}^{i \left (d x +c \right )} a^{4} A}{2 d}-\frac {27 i {\mathrm e}^{i \left (d x +c \right )} a^{4} C}{8 d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} a^{4} A}{2 d}+\frac {27 i {\mathrm e}^{-i \left (d x +c \right )} a^{4} C}{8 d}+\frac {i {\mathrm e}^{-2 i \left (d x +c \right )} a^{4} C}{2 d}+\frac {i a^{4} C \,{\mathrm e}^{-3 i \left (d x +c \right )}}{24 d}-\frac {i a^{4} A \left ({\mathrm e}^{3 i \left (d x +c \right )}-8 \,{\mathrm e}^{2 i \left (d x +c \right )}-{\mathrm e}^{i \left (d x +c \right )}-8\right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {13 a^{4} A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{d}+\frac {13 a^{4} A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{d}\) \(311\)
norman \(\frac {\left (4 a^{4} A +6 a^{4} C \right ) x +\left (-40 a^{4} A -60 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-16 a^{4} A -24 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (-16 a^{4} A -24 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (4 a^{4} A +6 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{16}+\left (16 a^{4} A +24 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (16 a^{4} A +24 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (16 a^{4} A +24 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}+\left (16 a^{4} A +24 a^{4} C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}+\frac {a^{4} \left (11 A +18 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {5 a^{4} \left (A -2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{15}}{d}-\frac {7 a^{4} \left (21 A -10 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{3 d}+\frac {5 a^{4} \left (39 A -46 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}-\frac {a^{4} \left (45 A +158 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{3 d}-\frac {a^{4} \left (81 A -106 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{3 d}+\frac {a^{4} \left (159 A +130 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}+\frac {a^{4} \left (285 A -2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{3 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{6} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{2}}-\frac {a^{4} \left (13 A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a^{4} \left (13 A +2 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(514\)

Input:

int((a+a*cos(d*x+c))^4*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x,method=_RETURNVER 
BOSE)
 

Output:

1/2*(-13*(cos(2*d*x+2*c)+1)*(A+2/13*C)*ln(tan(1/2*d*x+1/2*c)-1)+13*(cos(2* 
d*x+2*c)+1)*(A+2/13*C)*ln(tan(1/2*d*x+1/2*c)+1)+8*(A+3/2*C)*x*d*cos(2*d*x+ 
2*c)+(8*A+2*C)*sin(2*d*x+2*c)+(A+83/12*C)*sin(3*d*x+3*c)+sin(4*d*x+4*c)*C+ 
1/12*C*sin(5*d*x+5*c)+(3*A+41/6*C)*sin(d*x+c)+8*(A+3/2*C)*x*d)*a^4/d/(cos( 
2*d*x+2*c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.92 \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {24 \, {\left (2 \, A + 3 \, C\right )} a^{4} d x \cos \left (d x + c\right )^{2} + 3 \, {\left (13 \, A + 2 \, C\right )} a^{4} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (13 \, A + 2 \, C\right )} a^{4} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, C a^{4} \cos \left (d x + c\right )^{4} + 12 \, C a^{4} \cos \left (d x + c\right )^{3} + 2 \, {\left (3 \, A + 20 \, C\right )} a^{4} \cos \left (d x + c\right )^{2} + 24 \, A a^{4} \cos \left (d x + c\right ) + 3 \, A a^{4}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((a+a*cos(d*x+c))^4*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm= 
"fricas")
 

Output:

1/12*(24*(2*A + 3*C)*a^4*d*x*cos(d*x + c)^2 + 3*(13*A + 2*C)*a^4*cos(d*x + 
 c)^2*log(sin(d*x + c) + 1) - 3*(13*A + 2*C)*a^4*cos(d*x + c)^2*log(-sin(d 
*x + c) + 1) + 2*(2*C*a^4*cos(d*x + c)^4 + 12*C*a^4*cos(d*x + c)^3 + 2*(3* 
A + 20*C)*a^4*cos(d*x + c)^2 + 24*A*a^4*cos(d*x + c) + 3*A*a^4)*sin(d*x + 
c))/(d*cos(d*x + c)^2)
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*cos(d*x+c))**4*(A+C*cos(d*x+c)**2)*sec(d*x+c)**3,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.13 \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {48 \, {\left (d x + c\right )} A a^{4} - 4 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} C a^{4} + 12 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C a^{4} + 48 \, {\left (d x + c\right )} C a^{4} - 3 \, A a^{4} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 36 \, A a^{4} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a^{4} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, A a^{4} \sin \left (d x + c\right ) + 72 \, C a^{4} \sin \left (d x + c\right ) + 48 \, A a^{4} \tan \left (d x + c\right )}{12 \, d} \] Input:

integrate((a+a*cos(d*x+c))^4*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm= 
"maxima")
 

Output:

1/12*(48*(d*x + c)*A*a^4 - 4*(sin(d*x + c)^3 - 3*sin(d*x + c))*C*a^4 + 12* 
(2*d*x + 2*c + sin(2*d*x + 2*c))*C*a^4 + 48*(d*x + c)*C*a^4 - 3*A*a^4*(2*s 
in(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c 
) - 1)) + 36*A*a^4*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 6*C*a 
^4*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 12*A*a^4*sin(d*x + c) 
 + 72*C*a^4*sin(d*x + c) + 48*A*a^4*tan(d*x + c))/d
 

Giac [A] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.33 \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {12 \, {\left (2 \, A a^{4} + 3 \, C a^{4}\right )} {\left (d x + c\right )} + 3 \, {\left (13 \, A a^{4} + 2 \, C a^{4}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (13 \, A a^{4} + 2 \, C a^{4}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {6 \, {\left (7 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}} + \frac {4 \, {\left (3 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 15 \, C a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 38 \, C a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 27 \, C a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}}}{6 \, d} \] Input:

integrate((a+a*cos(d*x+c))^4*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x, algorithm= 
"giac")
 

Output:

1/6*(12*(2*A*a^4 + 3*C*a^4)*(d*x + c) + 3*(13*A*a^4 + 2*C*a^4)*log(abs(tan 
(1/2*d*x + 1/2*c) + 1)) - 3*(13*A*a^4 + 2*C*a^4)*log(abs(tan(1/2*d*x + 1/2 
*c) - 1)) - 6*(7*A*a^4*tan(1/2*d*x + 1/2*c)^3 - 9*A*a^4*tan(1/2*d*x + 1/2* 
c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2 + 4*(3*A*a^4*tan(1/2*d*x + 1/2*c)^5 + 1 
5*C*a^4*tan(1/2*d*x + 1/2*c)^5 + 6*A*a^4*tan(1/2*d*x + 1/2*c)^3 + 38*C*a^4 
*tan(1/2*d*x + 1/2*c)^3 + 3*A*a^4*tan(1/2*d*x + 1/2*c) + 27*C*a^4*tan(1/2* 
d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 + 1)^3)/d
 

Mupad [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.31 \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {A\,a^4\,\sin \left (c+d\,x\right )}{d}+\frac {20\,C\,a^4\,\sin \left (c+d\,x\right )}{3\,d}+\frac {8\,A\,a^4\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {13\,A\,a^4\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {12\,C\,a^4\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {2\,C\,a^4\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {4\,A\,a^4\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}+\frac {A\,a^4\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {C\,a^4\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )}{3\,d}+\frac {2\,C\,a^4\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )}{d} \] Input:

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^4)/cos(c + d*x)^3,x)
 

Output:

(A*a^4*sin(c + d*x))/d + (20*C*a^4*sin(c + d*x))/(3*d) + (8*A*a^4*atan(sin 
(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (13*A*a^4*atanh(sin(c/2 + (d*x)/2 
)/cos(c/2 + (d*x)/2)))/d + (12*C*a^4*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d* 
x)/2)))/d + (2*C*a^4*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (4* 
A*a^4*sin(c + d*x))/(d*cos(c + d*x)) + (A*a^4*sin(c + d*x))/(2*d*cos(c + d 
*x)^2) + (C*a^4*cos(c + d*x)^2*sin(c + d*x))/(3*d) + (2*C*a^4*cos(c + d*x) 
*sin(c + d*x))/d
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 426, normalized size of antiderivative = 2.29 \[ \int (a+a \cos (c+d x))^4 \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx=\frac {a^{4} \left (12 \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )^{3} c -12 \cos \left (d x +c \right )^{2} \sin \left (d x +c \right ) c -39 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a -6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} c +39 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a +6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) c +39 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a +6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} c -39 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a -6 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) c -2 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5} c +6 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a +44 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} c +24 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a d x +36 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} c d x -9 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a -42 \cos \left (d x +c \right ) \sin \left (d x +c \right ) c -24 \cos \left (d x +c \right ) a d x -36 \cos \left (d x +c \right ) c d x +24 \sin \left (d x +c \right )^{3} a -24 \sin \left (d x +c \right ) a \right )}{6 \cos \left (d x +c \right ) d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int((a+a*cos(d*x+c))^4*(A+C*cos(d*x+c)^2)*sec(d*x+c)^3,x)
 

Output:

(a**4*(12*cos(c + d*x)**2*sin(c + d*x)**3*c - 12*cos(c + d*x)**2*sin(c + d 
*x)*c - 39*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*a - 6*co 
s(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*c + 39*cos(c + d*x)*l 
og(tan((c + d*x)/2) - 1)*a + 6*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*c + 
39*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a + 6*cos(c + d* 
x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*c - 39*cos(c + d*x)*log(tan(( 
c + d*x)/2) + 1)*a - 6*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*c - 2*cos(c 
+ d*x)*sin(c + d*x)**5*c + 6*cos(c + d*x)*sin(c + d*x)**3*a + 44*cos(c + d 
*x)*sin(c + d*x)**3*c + 24*cos(c + d*x)*sin(c + d*x)**2*a*d*x + 36*cos(c + 
 d*x)*sin(c + d*x)**2*c*d*x - 9*cos(c + d*x)*sin(c + d*x)*a - 42*cos(c + d 
*x)*sin(c + d*x)*c - 24*cos(c + d*x)*a*d*x - 36*cos(c + d*x)*c*d*x + 24*si 
n(c + d*x)**3*a - 24*sin(c + d*x)*a))/(6*cos(c + d*x)*d*(sin(c + d*x)**2 - 
 1))