\(\int \frac {\cos ^3(c+d x) (A+C \cos ^2(c+d x))}{a+a \cos (c+d x)} \, dx\) [39]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 156 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=\frac {3 (4 A+5 C) x}{8 a}-\frac {(3 A+4 C) \sin (c+d x)}{a d}+\frac {3 (4 A+5 C) \cos (c+d x) \sin (c+d x)}{8 a d}+\frac {(4 A+5 C) \cos ^3(c+d x) \sin (c+d x)}{4 a d}-\frac {(A+C) \cos ^4(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {(3 A+4 C) \sin ^3(c+d x)}{3 a d} \] Output:

3/8*(4*A+5*C)*x/a-(3*A+4*C)*sin(d*x+c)/a/d+3/8*(4*A+5*C)*cos(d*x+c)*sin(d* 
x+c)/a/d+1/4*(4*A+5*C)*cos(d*x+c)^3*sin(d*x+c)/a/d-(A+C)*cos(d*x+c)^4*sin( 
d*x+c)/d/(a+a*cos(d*x+c))+1/3*(3*A+4*C)*sin(d*x+c)^3/a/d
 

Mathematica [A] (verified)

Time = 2.31 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.81 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (72 (4 A+5 C) d x \cos \left (\frac {d x}{2}\right )+72 (4 A+5 C) d x \cos \left (c+\frac {d x}{2}\right )-480 A \sin \left (\frac {d x}{2}\right )-552 C \sin \left (\frac {d x}{2}\right )-96 A \sin \left (c+\frac {d x}{2}\right )-168 C \sin \left (c+\frac {d x}{2}\right )-72 A \sin \left (c+\frac {3 d x}{2}\right )-120 C \sin \left (c+\frac {3 d x}{2}\right )-72 A \sin \left (2 c+\frac {3 d x}{2}\right )-120 C \sin \left (2 c+\frac {3 d x}{2}\right )+24 A \sin \left (2 c+\frac {5 d x}{2}\right )+40 C \sin \left (2 c+\frac {5 d x}{2}\right )+24 A \sin \left (3 c+\frac {5 d x}{2}\right )+40 C \sin \left (3 c+\frac {5 d x}{2}\right )-5 C \sin \left (3 c+\frac {7 d x}{2}\right )-5 C \sin \left (4 c+\frac {7 d x}{2}\right )+3 C \sin \left (4 c+\frac {9 d x}{2}\right )+3 C \sin \left (5 c+\frac {9 d x}{2}\right )\right )}{192 a d (1+\cos (c+d x))} \] Input:

Integrate[(Cos[c + d*x]^3*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x]),x]
 

Output:

(Cos[(c + d*x)/2]*Sec[c/2]*(72*(4*A + 5*C)*d*x*Cos[(d*x)/2] + 72*(4*A + 5* 
C)*d*x*Cos[c + (d*x)/2] - 480*A*Sin[(d*x)/2] - 552*C*Sin[(d*x)/2] - 96*A*S 
in[c + (d*x)/2] - 168*C*Sin[c + (d*x)/2] - 72*A*Sin[c + (3*d*x)/2] - 120*C 
*Sin[c + (3*d*x)/2] - 72*A*Sin[2*c + (3*d*x)/2] - 120*C*Sin[2*c + (3*d*x)/ 
2] + 24*A*Sin[2*c + (5*d*x)/2] + 40*C*Sin[2*c + (5*d*x)/2] + 24*A*Sin[3*c 
+ (5*d*x)/2] + 40*C*Sin[3*c + (5*d*x)/2] - 5*C*Sin[3*c + (7*d*x)/2] - 5*C* 
Sin[4*c + (7*d*x)/2] + 3*C*Sin[4*c + (9*d*x)/2] + 3*C*Sin[5*c + (9*d*x)/2] 
))/(192*a*d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.87, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3521, 25, 3042, 3227, 3042, 3113, 2009, 3115, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a \cos (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int -\cos ^3(c+d x) (a (3 A+4 C)-a (4 A+5 C) \cos (c+d x))dx}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \cos ^3(c+d x) (a (3 A+4 C)-a (4 A+5 C) \cos (c+d x))dx}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (a (3 A+4 C)-a (4 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {a (3 A+4 C) \int \cos ^3(c+d x)dx-a (4 A+5 C) \int \cos ^4(c+d x)dx}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (3 A+4 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^3dx-a (4 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3113

\(\displaystyle -\frac {-\frac {a (3 A+4 C) \int \left (1-\sin ^2(c+d x)\right )d(-\sin (c+d x))}{d}-a (4 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {-a (4 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx-\frac {a (3 A+4 C) \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {-a (4 A+5 C) \left (\frac {3}{4} \int \cos ^2(c+d x)dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {a (3 A+4 C) \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-a (4 A+5 C) \left (\frac {3}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {a (3 A+4 C) \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {-a (4 A+5 C) \left (\frac {3}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )-\frac {a (3 A+4 C) \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {-\frac {a (3 A+4 C) \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right )}{d}-a (4 A+5 C) \left (\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac {3}{4} \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )\right )}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^4(c+d x)}{d (a \cos (c+d x)+a)}\)

Input:

Int[(Cos[c + d*x]^3*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x]),x]
 

Output:

-(((A + C)*Cos[c + d*x]^4*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))) - (-((a* 
(3*A + 4*C)*(-Sin[c + d*x] + Sin[c + d*x]^3/3))/d) - a*(4*A + 5*C)*((Cos[c 
 + d*x]^3*Sin[c + d*x])/(4*d) + (3*(x/2 + (Cos[c + d*x]*Sin[c + d*x])/(2*d 
)))/4))/a^2
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3113
Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
and[(1 - x^2)^((n - 1)/2), x], x], x, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] 
 && IGtQ[(n - 1)/2, 0]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.58

method result size
parallelrisch \(\frac {\left (\left (24 A +38 C \right ) \cos \left (2 d x +2 c \right )-2 \cos \left (3 d x +3 c \right ) C +3 C \cos \left (4 d x +4 c \right )+\left (-48 A -82 C \right ) \cos \left (d x +c \right )-168 A -221 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+144 x d \left (A +\frac {5 C}{4}\right )}{96 d a}\) \(91\)
derivativedivides \(\frac {-A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {2 \left (-\frac {3 A}{2}-\frac {25 C}{8}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+2 \left (-\frac {7 A}{2}-\frac {115 C}{24}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+2 \left (-\frac {5 A}{2}-\frac {109 C}{24}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+2 \left (-\frac {A}{2}-\frac {7 C}{8}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{4}}+\frac {3 \left (4 A +5 C \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}}{d a}\) \(144\)
default \(\frac {-A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {2 \left (-\frac {3 A}{2}-\frac {25 C}{8}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+2 \left (-\frac {7 A}{2}-\frac {115 C}{24}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+2 \left (-\frac {5 A}{2}-\frac {109 C}{24}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+2 \left (-\frac {A}{2}-\frac {7 C}{8}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{4}}+\frac {3 \left (4 A +5 C \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}}{d a}\) \(144\)
risch \(\frac {3 x A}{2 a}+\frac {15 C x}{8 a}+\frac {i {\mathrm e}^{i \left (d x +c \right )} A}{2 a d}+\frac {7 i {\mathrm e}^{i \left (d x +c \right )} C}{8 a d}-\frac {i {\mathrm e}^{-i \left (d x +c \right )} A}{2 a d}-\frac {7 i {\mathrm e}^{-i \left (d x +c \right )} C}{8 a d}-\frac {2 i A}{d a \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}-\frac {2 i C}{d a \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}+\frac {C \sin \left (4 d x +4 c \right )}{32 a d}-\frac {C \sin \left (3 d x +3 c \right )}{12 a d}+\frac {\sin \left (2 d x +2 c \right ) A}{4 a d}+\frac {\sin \left (2 d x +2 c \right ) C}{2 a d}\) \(210\)
norman \(\frac {\frac {3 \left (4 A +5 C \right ) x}{8 a}-\frac {\left (A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{a d}+\frac {15 \left (4 A +5 C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{8 a}+\frac {15 \left (4 A +5 C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{4 a}+\frac {15 \left (4 A +5 C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{4 a}+\frac {15 \left (4 A +5 C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{8 a}+\frac {3 \left (4 A +5 C \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{8 a}-\frac {\left (8 A +11 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 a d}-\frac {5 \left (24 A +31 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{6 a d}-\frac {\left (32 A +45 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{4 a d}-\frac {2 \left (33 A +43 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{3 a d}-\frac {\left (66 A +95 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 a d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{5}}\) \(301\)

Input:

int(cos(d*x+c)^3*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c)),x,method=_RETURNVERBO 
SE)
 

Output:

1/96*(((24*A+38*C)*cos(2*d*x+2*c)-2*cos(3*d*x+3*c)*C+3*C*cos(4*d*x+4*c)+(- 
48*A-82*C)*cos(d*x+c)-168*A-221*C)*tan(1/2*d*x+1/2*c)+144*x*d*(A+5/4*C))/d 
/a
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.72 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=\frac {9 \, {\left (4 \, A + 5 \, C\right )} d x \cos \left (d x + c\right ) + 9 \, {\left (4 \, A + 5 \, C\right )} d x + {\left (6 \, C \cos \left (d x + c\right )^{4} - 2 \, C \cos \left (d x + c\right )^{3} + {\left (12 \, A + 13 \, C\right )} \cos \left (d x + c\right )^{2} - {\left (12 \, A + 19 \, C\right )} \cos \left (d x + c\right ) - 48 \, A - 64 \, C\right )} \sin \left (d x + c\right )}{24 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(cos(d*x+c)^3*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c)),x, algorithm="f 
ricas")
 

Output:

1/24*(9*(4*A + 5*C)*d*x*cos(d*x + c) + 9*(4*A + 5*C)*d*x + (6*C*cos(d*x + 
c)^4 - 2*C*cos(d*x + c)^3 + (12*A + 13*C)*cos(d*x + c)^2 - (12*A + 19*C)*c 
os(d*x + c) - 48*A - 64*C)*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1795 vs. \(2 (131) = 262\).

Time = 1.91 (sec) , antiderivative size = 1795, normalized size of antiderivative = 11.51 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)**3*(A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c)),x)
 

Output:

Piecewise((36*A*d*x*tan(c/2 + d*x/2)**8/(24*a*d*tan(c/2 + d*x/2)**8 + 96*a 
*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d*tan(c/2 + d* 
x/2)**2 + 24*a*d) + 144*A*d*x*tan(c/2 + d*x/2)**6/(24*a*d*tan(c/2 + d*x/2) 
**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 96*a*d*ta 
n(c/2 + d*x/2)**2 + 24*a*d) + 216*A*d*x*tan(c/2 + d*x/2)**4/(24*a*d*tan(c/ 
2 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 
 96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) + 144*A*d*x*tan(c/2 + d*x/2)**2/(24* 
a*d*tan(c/2 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d 
*x/2)**4 + 96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) + 36*A*d*x/(24*a*d*tan(c/2 
 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)**4 + 
96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) - 24*A*tan(c/2 + d*x/2)**9/(24*a*d*ta 
n(c/2 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d*x/2)* 
*4 + 96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) - 168*A*tan(c/2 + d*x/2)**7/(24* 
a*d*tan(c/2 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c/2 + d 
*x/2)**4 + 96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) - 312*A*tan(c/2 + d*x/2)** 
5/(24*a*d*tan(c/2 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d*tan(c 
/2 + d*x/2)**4 + 96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) - 216*A*tan(c/2 + d* 
x/2)**3/(24*a*d*tan(c/2 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 144*a*d 
*tan(c/2 + d*x/2)**4 + 96*a*d*tan(c/2 + d*x/2)**2 + 24*a*d) - 48*A*tan(c/2 
 + d*x/2)/(24*a*d*tan(c/2 + d*x/2)**8 + 96*a*d*tan(c/2 + d*x/2)**6 + 14...
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 351 vs. \(2 (148) = 296\).

Time = 0.12 (sec) , antiderivative size = 351, normalized size of antiderivative = 2.25 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=-\frac {C {\left (\frac {\frac {21 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {109 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {115 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {75 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a + \frac {4 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {6 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {4 \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {a \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}} - \frac {45 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {12 \, \sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )} + 12 \, A {\left (\frac {\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a + \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} - \frac {3 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {\sin \left (d x + c\right )}{a {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{12 \, d} \] Input:

integrate(cos(d*x+c)^3*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c)),x, algorithm="m 
axima")
 

Output:

-1/12*(C*((21*sin(d*x + c)/(cos(d*x + c) + 1) + 109*sin(d*x + c)^3/(cos(d* 
x + c) + 1)^3 + 115*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 75*sin(d*x + c)^ 
7/(cos(d*x + c) + 1)^7)/(a + 4*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 6*a 
*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 4*a*sin(d*x + c)^6/(cos(d*x + c) + 
1)^6 + a*sin(d*x + c)^8/(cos(d*x + c) + 1)^8) - 45*arctan(sin(d*x + c)/(co 
s(d*x + c) + 1))/a + 12*sin(d*x + c)/(a*(cos(d*x + c) + 1))) + 12*A*((sin( 
d*x + c)/(cos(d*x + c) + 1) + 3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/(a + 
2*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a*sin(d*x + c)^4/(cos(d*x + c) + 
 1)^4) - 3*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a + sin(d*x + c)/(a*(co 
s(d*x + c) + 1))))/d
 

Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.15 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=\frac {\frac {9 \, {\left (d x + c\right )} {\left (4 \, A + 5 \, C\right )}}{a} - \frac {24 \, {\left (A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a} - \frac {2 \, {\left (36 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 75 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 84 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 115 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 60 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 109 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 21 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{4} a}}{24 \, d} \] Input:

integrate(cos(d*x+c)^3*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c)),x, algorithm="g 
iac")
 

Output:

1/24*(9*(d*x + c)*(4*A + 5*C)/a - 24*(A*tan(1/2*d*x + 1/2*c) + C*tan(1/2*d 
*x + 1/2*c))/a - 2*(36*A*tan(1/2*d*x + 1/2*c)^7 + 75*C*tan(1/2*d*x + 1/2*c 
)^7 + 84*A*tan(1/2*d*x + 1/2*c)^5 + 115*C*tan(1/2*d*x + 1/2*c)^5 + 60*A*ta 
n(1/2*d*x + 1/2*c)^3 + 109*C*tan(1/2*d*x + 1/2*c)^3 + 12*A*tan(1/2*d*x + 1 
/2*c) + 21*C*tan(1/2*d*x + 1/2*c))/((tan(1/2*d*x + 1/2*c)^2 + 1)^4*a))/d
 

Mupad [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.98 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=\frac {3\,A\,x}{2\,a}+\frac {15\,C\,x}{8\,a}-\frac {A\,\sin \left (c+d\,x\right )}{a\,d}-\frac {7\,C\,\sin \left (c+d\,x\right )}{4\,a\,d}+\frac {A\,\sin \left (2\,c+2\,d\,x\right )}{4\,a\,d}-\frac {A\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a\,d}+\frac {C\,\sin \left (2\,c+2\,d\,x\right )}{2\,a\,d}-\frac {C\,\sin \left (3\,c+3\,d\,x\right )}{12\,a\,d}+\frac {C\,\sin \left (4\,c+4\,d\,x\right )}{32\,a\,d}-\frac {C\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a\,d} \] Input:

int((cos(c + d*x)^3*(A + C*cos(c + d*x)^2))/(a + a*cos(c + d*x)),x)
 

Output:

(3*A*x)/(2*a) + (15*C*x)/(8*a) - (A*sin(c + d*x))/(a*d) - (7*C*sin(c + d*x 
))/(4*a*d) + (A*sin(2*c + 2*d*x))/(4*a*d) - (A*tan(c/2 + (d*x)/2))/(a*d) + 
 (C*sin(2*c + 2*d*x))/(2*a*d) - (C*sin(3*c + 3*d*x))/(12*a*d) + (C*sin(4*c 
 + 4*d*x))/(32*a*d) - (C*tan(c/2 + (d*x)/2))/(a*d)
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.94 \[ \int \frac {\cos ^3(c+d x) \left (A+C \cos ^2(c+d x)\right )}{a+a \cos (c+d x)} \, dx=\frac {-6 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4} c +12 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a +27 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} c +24 \cos \left (d x +c \right ) a +24 \cos \left (d x +c \right ) c +8 \sin \left (d x +c \right )^{4} c -24 \sin \left (d x +c \right )^{2} a -48 \sin \left (d x +c \right )^{2} c +36 \sin \left (d x +c \right ) a d x +45 \sin \left (d x +c \right ) c d x -24 a -24 c}{24 \sin \left (d x +c \right ) a d} \] Input:

int(cos(d*x+c)^3*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c)),x)
 

Output:

( - 6*cos(c + d*x)*sin(c + d*x)**4*c + 12*cos(c + d*x)*sin(c + d*x)**2*a + 
 27*cos(c + d*x)*sin(c + d*x)**2*c + 24*cos(c + d*x)*a + 24*cos(c + d*x)*c 
 + 8*sin(c + d*x)**4*c - 24*sin(c + d*x)**2*a - 48*sin(c + d*x)**2*c + 36* 
sin(c + d*x)*a*d*x + 45*sin(c + d*x)*c*d*x - 24*a - 24*c)/(24*sin(c + d*x) 
*a*d)