\(\int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [659]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 202 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 \left (A b^2+2 a^2 C-b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b^2 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {4 a C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b^2 d \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (A b^2+a^2 C\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}} \] Output:

2*(A*b^2+2*C*a^2-C*b^2)*(a+b*cos(d*x+c))^(1/2)*EllipticE(sin(1/2*d*x+1/2*c 
),2^(1/2)*(b/(a+b))^(1/2))/b^2/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)- 
4*a*C*((a+b*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2) 
*(b/(a+b))^(1/2))/b^2/d/(a+b*cos(d*x+c))^(1/2)-2*(A*b^2+C*a^2)*sin(d*x+c)/ 
b/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.98 (sec) , antiderivative size = 166, normalized size of antiderivative = 0.82 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 (a+b) \left (A b^2+2 a^2 C-b^2 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-4 a \left (a^2-b^2\right ) C \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )-2 b \left (A b^2+a^2 C\right ) \sin (c+d x)}{(a-b) b^2 (a+b) d \sqrt {a+b \cos (c+d x)}} \] Input:

Integrate[(A + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

(2*(a + b)*(A*b^2 + 2*a^2*C - b^2*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*El 
lipticE[(c + d*x)/2, (2*b)/(a + b)] - 4*a*(a^2 - b^2)*C*Sqrt[(a + b*Cos[c 
+ d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] - 2*b*(A*b^2 + a^2* 
C)*Sin[c + d*x])/((a - b)*b^2*(a + b)*d*Sqrt[a + b*Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.07, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {3042, 3501, 27, 3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3501

\(\displaystyle -\frac {2 \int -\frac {a b (A+C)+\left (A b^2+\left (2 a^2-b^2\right ) C\right ) \cos (c+d x)}{2 \sqrt {a+b \cos (c+d x)}}dx}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a b (A+C)+\left (2 C a^2+A b^2-b^2 C\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}}dx}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a b (A+C)+\left (2 C a^2+A b^2-b^2 C\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {\frac {\left (2 a^2 C+A b^2-b^2 C\right ) \int \sqrt {a+b \cos (c+d x)}dx}{b}-\frac {2 a C \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}}dx}{b}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2 C+A b^2-b^2 C\right ) \int \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {2 a C \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\left (2 a^2 C+A b^2-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a C \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (2 a^2 C+A b^2-b^2 C\right ) \sqrt {a+b \cos (c+d x)} \int \sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a C \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {2 \left (2 a^2 C+A b^2-b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a C \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {2 \left (2 a^2 C+A b^2-b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (2 a^2 C+A b^2-b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{b \sqrt {a+b \cos (c+d x)}}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {2 \left (2 a^2 C+A b^2-b^2 C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {4 a C \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{b d \sqrt {a+b \cos (c+d x)}}}{b \left (a^2-b^2\right )}-\frac {2 \left (a^2 C+A b^2\right ) \sin (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}\)

Input:

Int[(A + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^(3/2),x]
 

Output:

((2*(A*b^2 + 2*a^2*C - b^2*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x) 
/2, (2*b)/(a + b)])/(b*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (4*a*(a^2 - 
 b^2)*C*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a 
 + b)])/(b*d*Sqrt[a + b*Cos[c + d*x]]))/(b*(a^2 - b^2)) - (2*(A*b^2 + a^2* 
C)*Sin[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 3501
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (C_.)*sin[(e_.) + 
(f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*((a + b*S 
in[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^ 
2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*b*(A + C)*(m + 1) - (A* 
b^2 + a^2*C + b^2*(A + C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, 
 e, f, A, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(493\) vs. \(2(201)=402\).

Time = 2.89 (sec) , antiderivative size = 494, normalized size of antiderivative = 2.45

method result size
default \(-\frac {\sqrt {-\left (-2 b \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \left (2 a \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )-a \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+b \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )\right )}{b^{2} \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {2 \left (A \,b^{2}+a^{2} C \right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -\sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b \right )}{b^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-a -b \right ) \left (a^{2}-b^{2}\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a +b}\, d}\) \(494\)
parts \(-\frac {2 A \left (2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a -\sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b \right )}{\left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a +b}\, d}-\frac {2 C \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{2} b -2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}+2 a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2} b -\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \,b^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-\frac {2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a -b}+\frac {a +b}{a -b}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{3}\right )}{b^{2} \left (a -b \right ) \left (a +b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a +b}\, d}\) \(749\)

Input:

int((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*C/b^2/( 
-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(2*a*El 
lipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-a*EllipticE(cos(1/2*d*x+1/2 
*c),(-2*b/(a-b))^(1/2))+b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)) 
)-2*(A*b^2+C*a^2)/b^2/sin(1/2*d*x+1/2*c)^2/(2*b*sin(1/2*d*x+1/2*c)^2-a-b)/ 
(a^2-b^2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2* 
b*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2 
+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*a-(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1 
/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(sin(1/2*d*x+1/2*c)^2 
)^(1/2)*b))/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 603, normalized size of antiderivative = 2.99 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

2/3*(sqrt(1/2)*(4*I*C*a^4 - I*(A + 5*C)*a^2*b^2 + (4*I*C*a^3*b - I*(A + 5* 
C)*a*b^3)*cos(d*x + c))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^ 
2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) 
 + 2*a)/b) + sqrt(1/2)*(-4*I*C*a^4 + I*(A + 5*C)*a^2*b^2 + (-4*I*C*a^3*b + 
 I*(A + 5*C)*a*b^3)*cos(d*x + c))*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 
 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*si 
n(d*x + c) + 2*a)/b) + 3*sqrt(1/2)*(2*I*C*a^3*b + I*(A - C)*a*b^3 + (2*I*C 
*a^2*b^2 + I*(A - C)*b^4)*cos(d*x + c))*sqrt(b)*weierstrassZeta(4/3*(4*a^2 
 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 
 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b* 
sin(d*x + c) + 2*a)/b)) + 3*sqrt(1/2)*(-2*I*C*a^3*b - I*(A - C)*a*b^3 + (- 
2*I*C*a^2*b^2 - I*(A - C)*b^4)*cos(d*x + c))*sqrt(b)*weierstrassZeta(4/3*( 
4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*( 
4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3 
*I*b*sin(d*x + c) + 2*a)/b)) - 3*(C*a^2*b^2 + A*b^4)*sqrt(b*cos(d*x + c) + 
 a)*sin(d*x + c))/((a^2*b^4 - b^6)*d*cos(d*x + c) + (a^3*b^3 - a*b^5)*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/(b*cos(d*x + c) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/(b*cos(d*x + c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(3/2),x)
 

Output:

int((A + C*cos(c + d*x)^2)/(a + b*cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2} b^{2}+2 \cos \left (d x +c \right ) a b +a^{2}}d x \right ) c \] Input:

int((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int(sqrt(cos(c + d*x)*b + a)/(cos(c + d*x)**2*b**2 + 2*cos(c + d*x)*a*b + 
a**2),x)*a + int((sqrt(cos(c + d*x)*b + a)*cos(c + d*x)**2)/(cos(c + d*x)* 
*2*b**2 + 2*cos(c + d*x)*a*b + a**2),x)*c